Theorems on the Separability of α-Sets in Euclidean Space



We study α-sets in Euclidean space ℝ n . The notion of α-set is introduced as a generalization of a convex closed set in ℝ n . This notion appeared in the study of reachable sets and integral funnels of nonlinear control systems in Euclidean spaces. Reachable sets of nonlinear dynamic systems are usually nonconvex, and the degree of their nonconvexity is different in different systems. This circumstance prompted the introduction of a classification of sets in ℝ n according to the degree of their nonconvexity. Such a classification stems from control theory and is presented here in terms of α-sets in ℝ n .


α-set convex set in ℝn convex hull in ℝn α-hyperplane α-separability Bouligand cone normal cone. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Ushakov, A. A. Uspenskii, and A. N. Fomin, α-Sets and Their Properties (Inst. Mat. Mekh. UrO RAN, Yekaterinburg, 2004) [in Russian].Google Scholar
  2. 2.
    B. N. Pshenichnyi, Convex Analysis and Extremal Problems (Nauka, Moscow, 1980) [in Russian].MATHGoogle Scholar
  3. 3.
    E. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2007) [in Russian].MATHGoogle Scholar
  4. 4.
    V. N. Ushakov, A. A. Uspenskii, and P. D. Lebedev, “Construction of a minimax solution for an eikonal-type equation,” Proc. Steklov Inst. Math., Suppl. 2, S191–S201 (2008).MathSciNetMATHGoogle Scholar
  5. 5.
    V. N. Ushakov, A. A. Uspenskii, and T. B. Tokmantsev, “Stable bridges in differential games in a finite time interval,” Proc. Steklov Inst. Math., Suppl. 2, S168–S192 (2005).MathSciNetMATHGoogle Scholar
  6. 6.
    A. A. Uspenskii and P. D. Lebedev, “Construction of the optimal outcome function for a time-optimal problem on the basis of a symmetry set,” Autom. Remote Control 70 (7), 1132–1139 (2009).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. A. Uspenskii and P. D. Lebedev, “Geometry and asymptotics of wavefronts,” Russian Math. (Iz. VUZ) 52 (3), 24–33 (2008).MathSciNetMATHGoogle Scholar
  8. 8.
    A. A. Uspenskii and P. D. Lebedev, “On the set of limit values of local diffeomorphisms in wavefront evolution,” Proc. Steklov Inst. Math. 272 (Suppl. 1), S255–S270 (2011).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes,” Atti Accad. Naz. Lincei 21, 562–567 (1935).MATHGoogle Scholar
  10. 10.
    G. Bouligand, “Sur les surfaces depourvues de points hyperlimites,” Ann. Soc. Polon. Math. 9, 32–41 (1930).MATHGoogle Scholar
  11. 11.
    V. F. Dem’yanov and A. M. Rubinov, Foundations of Nonsmooth Analysis and Quasi-Differential Calculus (Nauka, Moscow, 1990) [in Russian].MATHGoogle Scholar
  12. 12.
    B. M. Makarov and A. N. Podkorytov, Lectures on Real Analysis (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations