The Method of Characteristics in an Identification Problem

  • N. N. Subbotina
  • E. A. Krupennikov


We consider the problem of identifying the parameters of a dynamic system from a noisy history of measuring the phase trajectory. We propose a new approach to the solution of this problem based on the construction of an auxiliary optimal control problem such that its extremals approximate the measurement history with a given accuracy. Using the solutions of the corresponding characteristic system, we obtain estimates for the residual, which is the difference between the coordinates of the extremals and the measurements of the phase trajectory. An estimate for the result of identifying the parameters of the dynamic system is obtained. An illustrative numerical example is given.


identification residual functional Hamilton–Jacobi–Bellman equation characteristic system. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. T. Polyak, Introduction to Optimization (Nauka, Moscow, 1983; Optimization Software, New York, 1987).MATHGoogle Scholar
  2. 2.
    Handbook of Automatic Control Theory, Ed. by A. Krasovskii (Nauka, Moscow, 1987) [in Russian].Google Scholar
  3. 3.
    N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman Equations (Izd. UrO RAN, Yekaterinburg, 2013) [in Russian].Google Scholar
  4. 4.
    N. N. Subbotina and T. B. Tokmantsev, “Optimal synthesis to inverse problems of dynamics,” in Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014 (Elsevier, New York, 2014), pp. 5866–5871.Google Scholar
  5. 5.
    A. V. Kryazhimskii and Yu. S. Osipov, “Modelling of a control in a dynamic system,” Engrg. Cybernetics 21 (2), 38–47 (1984).MathSciNetGoogle Scholar
  6. 6.
    Yu. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions (Gordon and Breach, London, 1995).MATHGoogle Scholar
  7. 7.
    N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].Google Scholar
  8. 8.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].MATHGoogle Scholar
  9. 9.
    A. N. Tikhonov, “On the stability of inverse problems,” C. R. (Doklady) Acad. Sci. URSS (N.S.) 39, 195–198 (1943).Google Scholar
  10. 10.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1961; Wiley, New York, 1962).Google Scholar
  11. 11.
    A. I. Subbotin, Generalized Solutions of First-Order Partial Differential Equations: The Dynamical Optimization Perspective (Birkhäuser, Boston, 1995; Inst. Komp. Issled., Moscow–Izhevsk, 2003).Google Scholar
  12. 12.
    N. N. Subbotina and E. A. Krupennikov, “Dynamic programming to identification problems,” World J. Eng. Technol. 4 (3B), 228–234 (2016).CrossRefGoogle Scholar
  13. 13.
    E. A. Krupennikov, “Validation of a solution method for the problem of reconstructing the dynamics of a macroeconomic system,” Trudy Inst. Mat. Mekh. UrO RAN 21 (2), 102–114 (2015).MathSciNetGoogle Scholar
  14. 14.
    E. A. Barbashin, Introduction to the Theory of Stability (Nauka, Moscow, 1967) [in Russian].MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations