A Study of the Generalized Pontryagin Test Example from the Theory of Differential Games



A generalization of L.S.Pontryagin’s test example from the theory of differential games is considered. The study is based on Pontryagin’s first direct method, which was developed for the constructive solution of linear pursuit–evasion differential games of kind.


differential games Pontryagin’s test example Pontryagin’s first direct method. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Pontryagin, “On the theory of differential games,” Russ. Math. Surv. 21 (4), 193–246 (1966).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    L. S. Pontryagin and E. F. Mishchenko, “Linear differential games,” Dokl. AN SSSR 174 (1), 27–29 (1967).MathSciNetMATHGoogle Scholar
  3. 3.
    L. S. Pontryagin, “On linear differential games. I,” Dokl. AN SSSR 174 (6), 1278–1280 (1967).MathSciNetMATHGoogle Scholar
  4. 4.
    L. S. Pontryagin, “On linear differential games. II,” Dokl. AN SSSR 175 (4), 764–766 (1967).MathSciNetMATHGoogle Scholar
  5. 5.
    L. S. Pontryagin, “Linear differential games of pursuit,” Math. USSR Sb. 40 (3), 285–303 (1981).CrossRefMATHGoogle Scholar
  6. 6.
    L. S. Pontryagin, “A linear differential evasion game,” Proc. Steklov Inst. Math. 112, 27–60 (1971).MathSciNetMATHGoogle Scholar
  7. 7.
    M. S. Nikol’skii, Pontryagin’s First Direct Method in Differential Games (Izd. Mosk. Gos. Univ., Moscow, 1984) [in Russian].MATHGoogle Scholar
  8. 8.
    R. Isaacs, Differential Games (Wiley, New York, 1965; Mir, Moscow, 1967).MATHGoogle Scholar
  9. 9.
    B. N. Pshenichnyi, “Linear differential games,” Automat. Remote Control, No. 1, 55–67 (1968).MathSciNetGoogle Scholar
  10. 10.
    N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].MATHGoogle Scholar
  11. 11.
    V. I. Blagodatskikh, Introduction to Optimal Control: Linear Theory (Vyssh. Shkola, Moscow, 2001) [in Russian].Google Scholar
  12. 12.
    F. R. Gantmakher, The Theory of Matrices ((Fizmatlit, Moscow, 2004) [in Russian].MATHGoogle Scholar
  13. 13.
    V. I. Arnold, Ordinary Differential Equations (Izd. Udmurt. Gos. Univ., Izhevsk, 2000) [in Russian].Google Scholar
  14. 14.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover, New York, 1999).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations