Nonabelian Composition Factors of a Finite Group Whose Maximal Subgroups of Odd Indices Are Hall Subgroups

Article
  • 4 Downloads

Abstract

We obtain a description of nonabelian composition factors of a finite nonsolvable group in which any maximal subgroup of odd index is a Hall subgroup.

Keywords

finite group maximal subgroup Hall subgroup composition factor odd index. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Vdovin and D. O. Revin, “Sylow-type theorems,” Russ. Math. Surv. 66 (5), 829–870 (2011).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. S. Kondrat’ev, Lie Groups and Algebras (IMM UrO RAN, Yekaterinburg, 2009) [in Russian].Google Scholar
  3. 3.
    A. S. Kondrat’ev, “Normalizers of the Sylow 2-subgroups in finite simple groups,” Math. Notes 78 (3), 338–346 (2005).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. S. Kondrat’ev, “Subgroups of finite Chevalley groups,” Russ. Math. Surv. 41 (1), 65–118 (1986).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    The Kourovka Notebook: Unsolved Problems in Group Theory, 18th ed. (Inst. Mat. SO RAN, Novosibirsk, 2014). http://math.nsc.ru/|alglog/18kt.pdfGoogle Scholar
  6. 6.
    N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups,” Proc. Steklov Inst. Math. 267 (Suppl. 1), S164–S183 (2009).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with alternating socle,” Proc. Steklov Inst. Math. 285 (Suppl. 1), S136–S138 (2014).CrossRefMATHGoogle Scholar
  8. 8.
    N. V. Maslova, “Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle,” Algebra Logic 50 (2), 133–145 (2011).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall,” Sib. Math. J. 53 (5), 853–861 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    N. V. Maslova and D. O. Revin, “Finite groups whose maximal subgroups have the Hall property,” Sib. Adv. Math. 23 (3), 196–209 (2013).CrossRefMATHGoogle Scholar
  11. 11.
    V. S. Monakhov, “Finite π-solvable groups whose maximal subgroups have the Hall property,” Math. Notes 84 (3–4), 363–366 (2008).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    D. O. Revin, “Hall π-subgroups of finite Chevalley groups whose characteristic belongs to π,” Sib. Adv. Math. 9 (2), 25–71 (1999).MathSciNetMATHGoogle Scholar
  13. 13.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups (Clarendon, Oxford, 1985).MATHGoogle Scholar
  14. 14.
    J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013).CrossRefMATHGoogle Scholar
  15. 15.
    M. Giudici, “Maximal subgroups of almost simple groups with socle PSL(2, q).” https://arxiv.org/abs /math/0703685.pdf. Cited March 23, 2007.Google Scholar
  16. 16.
    P. Hall, “Theorems like Sylow’s,” Proc. London Math. Soc. (3) 6 (2), 286–304 (1956).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups (Cambridge Univ. Press, Cambridge, 1990).CrossRefMATHGoogle Scholar
  18. 18.
    M. W. Liebeck and J. Saxl, “The primitive permutation groups of odd degree,” J. London Math. Soc. 31 (2), 250–264 (1985).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    T. Oshima, “A classification of subsystems of a root system,” http://arxiv.org/pdf/math/0611904v4.pdf. Cited June 14, 2007.Google Scholar
  20. 20.
    D. O. Revin and E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups,” J. Algebra 324, 3614–3652 (2010).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J. G. Thompson, “Hall subgroups of the symmetric groups,” J. Comb. Theory 1, 271–279 (1966).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Sobolev Institute of MathematicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations