Stabilizers of Vertices of Graphs with Primitive Automorphism Groups and a Strong Version of the Sims Conjecture. III



This is the third in a series of papers whose results imply the validity of a strong version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with simple socle of classical nonorthogonal Lie type and nonparabolic point stabilizer is considered.


finite primitive permutation group almost simple group group of classical Lie type stabilizer of a point Sims conjecture. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Kondrat’ev, “Normalizers of the Sylow 2-subgroups in finite simple groups,” Math. Notes 78 (3–4), 338–346 (2005).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. S. Kondrat’ev and V. I. Trofimov, “Stabilizers of graph’s vertices and a strengthened version of the Sims conjecture,” Dokl. Math. 59 (1), 113–115 (1999).MATHGoogle Scholar
  3. 3.
    M. Aschbacher, “On the maximal subgroups of the finite classical groups,” Invent. Math. 76 (3), 469–514 (1984).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups (Clarendon, Oxford, 1985).MATHGoogle Scholar
  5. 5.
    J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups (Cambridge Univ. Press, Cambridge, 2013).CrossRefMATHGoogle Scholar
  6. 6.
    R. W. Carter, Simple Groups of Lie Type (Wiley, New York, 1972).MATHGoogle Scholar
  7. 7.
    G. C. Gerono, “Note sur la résolution en nombres entiers et positifs de l’équation xm = yn + 1,” Nouv. Ann. Math. (2) 9, 469–471 (1870).MATHGoogle Scholar
  8. 8.
    D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).MATHGoogle Scholar
  9. 9.
    D. Gorenstein and R. Harada, “On finite groups with Sylow 2-subgroups of type An, n = 8, 9, 10, 11,” Math. Z. 117 (1–4), 207–238 (1970).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups (Amer. Math. Soc., Providence, RI, 1998), Ser. Math. Surveys and Monographs 40, issue 3.MATHGoogle Scholar
  11. 11.
    P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups (Cambridge Univ. Press, Cambridge, 1990), Ser. London Math. Soc. Lect. Note 129.CrossRefMATHGoogle Scholar
  12. 12.
    D. Mason, “Finite simple groups with Sylow 2-subgroups of type PSL(4,q),” J. Algebra 26 (1), 75–97 (1973).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    K. Zsigmondy, “Zur Theorie der Potenzreste,” Monatsh. Math. Phys. 3, 265–284 (1892).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of the Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations