Skip to main content
Log in

Haas Molnar Continued Fractions and Metric Diophantine Approximation

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Haas–Molnar maps are a family of maps of the unit interval introduced by A. Haas and D. Molnar. They include the regular continued fraction map and A. Renyi’s backward continued fraction map as important special cases. As shown by Haas and Molnar, it is possible to extend the theory of metric diophantine approximation, already well developed for the Gauss continued fraction map, to the class of Haas–Molnar maps. In particular, for a real number x, if (p n /q n )n≥1 denotes its sequence of regular continued fraction convergents, set θ n (x) = q 2 n |xp n /q n |, n = 1, 2.... The metric behaviour of the Cesàro averages of the sequence (θ n (x))n≥1 has been studied by a number of authors. Haas and Molnar have extended this study to the analogues of the sequence (θ n (x))n≥1 for the Haas–Molnar family of continued fraction expansions. In this paper we extend the study of \(({\theta _{{k_n}}}(x))\)n≥1 for certain sequences (k n )n≥1, initiated by the second named author, to Haas–Molnar maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alkauskas, “Transfer operator for the Gauss’ continued fraction map. I: Structure of the eigenvalues and trace formulas,” arXiv: 1210.4083v6 [math.NT].

  2. K. I. Babenko, “On a problem of Gauss,” Dokl. Akad. Nauk SSSR 238 (5), 1021–1024 (1978) [Sov. Math., Dokl. 19, 136–140 (1978)].

    MathSciNet  MATH  Google Scholar 

  3. K. I. Babenko and S. P. Jur’ev, “On the discretization of a problem of Gauss,” Dokl. Akad. Nauk SSSR 240 (6), 1273–1276 (1978) [Sov. Math., Dokl. 19, 731–735 (1978)].

    MathSciNet  Google Scholar 

  4. A. Bellow, R. Jones, and J. Rosenblatt, “Convergence for moving averages,” Ergodic Theory Dyn. Syst. 10 (1), 43–62 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Boshernitzan, G. Kolesnik, A. Quas, and M. Wierdl, “Ergodic averaging sequences,” J. Anal. Math. 95, 63–103 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bosma, H. Jager, and F. Wiedijk, “Some metrical observations on the approximation by continued fractions,” Indag. Math. 45, 281–299 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, “On the maximal ergodic theorem for certain subsets of the integers,” Isr. J. Math. 61 (1), 39–72 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bourgain (with an appendix jointly with H. Furstenberg, Y. Katznelson, and D. S. Ornstein), “Pointwise ergodic theorems for arithmetic sets,” Publ. Math., Inst. Hautes Étud. Sci. 69, 5–45 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. M. Burton, C. Kraaikamp, and T. A. Schmidt, “Natural extensions for the Rosen fractions,” Trans. Am. Math. Soc. 352 (3), 1277–1298 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic Theory (Springer, New York, 1982), Grundl. Math. Wiss. 245.

    Book  MATH  Google Scholar 

  11. K. Dajani, C. Kraaikamp, and N. van der Wekken, “Ergodicity of N-continued fraction expansions,” J. Number Theory 133 (9), 3183–3204 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Gröchenig and A. Haas, “Backward continued fractions, Hecke groups and invariant measures for transformations of the interval,” Ergodic Theory Dyn. Syst. 16 (6), 1241–1274 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Haas, “Invariant measures and natural extensions,” Can. Math. Bull. 45 (1), 97–108 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Haas and D. Molnar, “Metrical diophantine approximation for continued fraction like maps of the interval,” Trans. Am. Math. Soc. 356 (7), 2851–2870 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Haas and D. Molnar, “The distribution of Jager pairs for continued fraction like mappings of the interval,” Pac. J. Math 217 (1), 101–114 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Hensley, “Continued fraction Cantor sets, Hausdorff dimension, and functional analysis,” J. Number Theory 40 (3), 336–358 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Hensley, “Metric Diophantine approximation and probability,” New York J. Math. 4, 249–257 (1998).

    MathSciNet  MATH  Google Scholar 

  18. C. T. Ionescu Tulcea and G. Marinescu, “Théorie ergodique pour des classes d’opérations non complètement continues,” Ann. Math., Ser. 2, 52 (1), 140–147 (1950).

    Article  MATH  Google Scholar 

  19. S. Lang, Introduction to Diophantine Approximations (Addison-Wesley, Reading, MA, 1966), Addison-Wesley Ser. Math.

    MATH  Google Scholar 

  20. D. H. Mayer, The Ruelle–Araki Transfer Operator in Classical Statistical Mechanics (Springer, Berlin, 1980), Lect. Notes Phys. 123.

    MATH  Google Scholar 

  21. D. Mayer and G. Roepstorff, “On the relaxation time of Gauss’s continued-fraction map. I: The Hilbert space approach (Koopmanism),” J. Stat. Phys. 47 (1–2), 149–171 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Mayer and G. Roepstorff, “On the relaxation time of Gauss’ continued-fraction map. II: The Banach space approach (transfer operator method),” J. Stat. Phys. 50 (1–2), 331–344 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Nair, “On polynomials in primes and J. Bourgain’s circle method approach to ergodic theorems. II,” Stud. Math. 105 (3), 207–233 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Nair, “On the metrical theory of continued fractions,” Proc. Am. Math. Soc. 120 (4), 1041–1046 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Nair, “On uniformly distributed sequences of integers and Poincaré recurrence. II,” Indag. Math., New Ser. 9 (3), 405–415 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Nair, “On metric Diophantine approximation and subsequence ergodic theory,” New York J. Math. 3A, 117–124 (1998).

    MathSciNet  MATH  Google Scholar 

  27. R. Nair and M. Weber, “On random perturbation of some intersective sets,” Indag. Math., New Ser. 15 (3), 373–381 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Nakada, “Metrical theory for a class of continued fraction transformations and their natural extensions,” Tokyo J. Math. 4, 399–426 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  29. S. M. Rudolfer and K. M. Wilkinson, “A number-theoretic class of weak Bernoulli transformations,” Math. Syst. Theory 7, 14–24 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Ruelle, “Dynamical zeta functions and transfer operators,” Notices Am. Math. Soc. 49 (8), 887–895 (2002).

    MathSciNet  MATH  Google Scholar 

  31. D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd ed. (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  32. A. Tempelman, Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects (Kluwer, Dordrecht, 1992), Math. Appl. 78.

    Book  Google Scholar 

  33. L. Vepštas, “The Gauss–Kuzmin–Wirsing operator,” http://67.198.37.16/math/gkw.pdf

  34. P. Walters, An Introduction to Ergodic Theory (Springer, New York, 1981).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangang Ma.

Additional information

In memory of A. A. Karatsuba

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2017, Vol. 299, pp. 170–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Nair, R. Haas Molnar Continued Fractions and Metric Diophantine Approximation. Proc. Steklov Inst. Math. 299, 157–177 (2017). https://doi.org/10.1134/S0081543817080119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543817080119

Navigation