Proceedings of the Steklov Institute of Mathematics

, Volume 299, Issue 1, pp 143–156 | Cite as

Discrete Universality in the Selberg Class



The Selberg class S consists of functions L(s) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in S that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts L(s + ), τ ∈ R. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts L(s + ikh), k = 0, 1,..., where h > 0 is an arbitrary fixed number.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bagchi, “The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series,” PhD Thesis (Indian Stat. Inst., Calcutta, 1981).Google Scholar
  2. 2.
    B. Bagchi, “Recurrence in topological dynamics and the Riemann hypothesis,” Acta Math. Hung. 50, 227–240 (1987).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. Billingsley, Convergence of Probability Measures (J. Willey and Sons, New York, 1968).MATHGoogle Scholar
  4. 4.
    K. M. Bitar, N. N. Khuri, and H. C. Ren, “Path integrals and Voronin’s theorem on the universality of the Riemann zeta function,” Ann. Phys. 211 (1), 172–196 (1991).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    E. Buivydas and A. Laurinčikas, “A discrete version of the Mishou theorem,” Ramanujan J. 38 (2), 331–347 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    E. Buivydas, A. Laurinčikas, R. Macaitienė, and J. Rašytė, “Discrete universality theorems for the Hurwitz zeta-function,” J. Approx. Theory 183, 1–13 (2014).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. Dubickas and A. Laurinčikas, “Distribution modulo 1 and the discrete universality of the Riemann zetafunction,” Abh. Math. Semin. Univ. Hamburg 86 (1), 79–87 (2016).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    R. Garunkštis, “The effective universality theorem for the Riemann zeta function,” in Proc. Session in Analytic Number Theory and Diophantine Equations, Bonn, 2002 (Univ. Bonn, Bonn, 2003), Bonner Math. Schriften 360.Google Scholar
  9. 9.
    R. Garunkštis, “Self-approximation of Dirichlet L-functions,” J. Number Theory 131 (7), 1286–1295 (2011).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    R. Garunkštis and A. Laurinčikas, “On one Hilbert’s problem for the Lerch zeta-function,” Publ. Inst. Math., Nouv. Sér. 65 (79), 63–68 (1999).MathSciNetMATHGoogle Scholar
  11. 11.
    R. Garunkštis, A. Laurinčikas, K. Matsumoto, J. Steuding, and R. Steuding, “Effective uniform approximation by the Riemann zeta-function,” Publ. Math., Barc. 54 (1), 209–219 (2010).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. Kaczorowski and A. Perelli, “The Selberg class: A survey,” in Number Theory in Progress: Proc. Conf. in Honor of A. Schinzel, Zakopane (Poland), 1997, Ed. by K. Györy et al. (W. de Gruyter, Berlin, 1999), Vol. 2, pp. 953–992.Google Scholar
  13. 13.
    J. Kaczorowski and A. Perelli, “On the structure of the Selberg class. I: 0 ≤ d ≤ 1,” Acta Math. 182 (2), 207–241 (1999).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function (W. de Gruyter, Berlin, 1992).CrossRefMATHGoogle Scholar
  15. 15.
    A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function (Kluwer, Dordrecht, 1996).CrossRefMATHGoogle Scholar
  16. 16.
    A. Laurinčikas, “On zeros of some analytic functions related to the Riemann zeta-function,” Glas. Mat. 48 (1), 59–65 (2013).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Laurinčikas, “On the universality of the Hurwitz zeta-function,” Int. J. Number Theory 9 (1), 155–165 (2013).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. Laurinčikas, “A discrete universality theorem for the Hurwitz zeta-function,” J. Number Theory 143, 232–247 (2014).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    A. Laurinčikas, “Distribution modulo 1 and universality of the Hurwitz zeta-function,” J. Number Theory 167, 294–303 (2016).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. Laurinčikas and R. Garunkštis, The Lerch Zeta-Function (Kluwer, Dordrecht, 2002).MATHGoogle Scholar
  21. 21.
    A. Laurinčikas and R. Macaitienė, “The discrete universality of the periodic Hurwitz zeta function,” Integral Transforms Spec. Funct. 20, 673–686 (2009).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Laurinčikas and K. Matsumoto, “The universality of zeta-functions attached to certain cusp forms,” Acta Arith. 98 (4), 345–359 (2001).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    A. Laurinčikas, K. Matsumoto, and J. Steuding, “Discrete universality of L-functions of new forms. II,” Lith. Math. J. 56 (2), 207–218 (2016).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    A. Laurinčikas, M. Stoncelis, and D. Šiaučiūnas, “On the zeros of some functions related to periodic zetafunctions,” Chebyshev. Sb. 15 (1), 121–130 (2014).Google Scholar
  25. 25.
    R. Macaitienė, “Mixed joint universality for L-functions from Selberg’s class and periodic Hurwitz zeta-functions,” Chebyshev. Sb. 16 (1), 219–231 (2015).MathSciNetGoogle Scholar
  26. 26.
    K. Matsumoto, “A survey on the theory of universality for zeta and L-functions,” in Number Theory: Plowing and Starring through High Wave Forms: Proc. 7th China–Japan Semin., Ed. by M. Kaneko, S. Kanemitsu, and J. Liu (World Scientific, Hackensack, NJ, 2015), Ser. Number Theory Appl. 11, pp. 95–144.Google Scholar
  27. 27.
    S. N. Mergelyan, “Uniform approximations to functions of a complex variable,” Usp. Mat. Nauk 7 (2), 31–122 (1952). Engl. transl.: Uniform Approximations to Functions of a Complex Variable (Am. Math. Soc., Providence, RI, 1954), AMS Transl. 101.MathSciNetMATHGoogle Scholar
  28. 28.
    H. Mishou and H. Nagoshi, “Functional distribution of L(s, χ d) with real characters and denseness of quadratic class numbers,” Trans. Am. Math. Soc. 358 (10), 4343–4366 (2006).MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    H. L. Montgomery, Topics in Multiplicative Number Theory (Springer, Berlin, 1971), Lect. Notes Math. 227.CrossRefMATHGoogle Scholar
  30. 30.
    S. A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups (Cambridge Univ. Press, Cambridge, 1977), LMS Lect. Note Ser. 29.CrossRefMATHGoogle Scholar
  31. 31.
    H. Nagoshi and J. Steuding, “Universality for L-functions in the Selberg class,” Lith. Math. J. 50 (3), 293–311 (2010).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    T. Nakamura, “The generalized strong recurrence for non-zero rational parameters,” Arch. Math. 95 (6), 549–555 (2010).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    T. Nakamura and Ł. Pańkowski, “Self-approximation for the Riemann zeta function,” Bull. Aust. Math. Soc. 87 (3), 452–461 (2013).MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    A. Reich, “Werteverteilung von Zetafunktionen,” Arch. Math. 34, 440–451 (1980).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    A. Selberg, “Old and new conjectures and results about a class of Dirichlet series,” in Proc. Amalfi Conf. on Analytic Number Theory, Maiori (Italy), 1989, Ed. by E. Bombieri et al. (Univ. Salerno, Salerno, 1992), pp. 367–385.Google Scholar
  36. 36.
    J. Steuding, “Upper bounds for the density of universality,” Acta Arith. 107 (2), 195–202 (2003).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    J. Steuding, “Upper bounds for the density of universality. II,” Acta Math. Univ. Ostrav. 13 (1), 73–82 (2005).MathSciNetMATHGoogle Scholar
  38. 38.
    J. Steuding, Value-Distribution of L-Functions (Springer, Berlin, 2007), Lect. Notes Math. 1877.MATHGoogle Scholar
  39. 39.
    S. M. Voronin, “On the distribution of nonzero values of the Riemann ζ-function,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 128, 131–150 (1972) [Proc. Steklov Inst. Math. 128, 153–175 (1972)].MathSciNetGoogle Scholar
  40. 40.
    S. M. Voronin, “Theorem on the ‘universality’ of the Riemann zeta-function,” Izv. Akad. Nauk SSSR, Ser. Mat. 39 (3), 457–486 (1975) [Math. USSR, Izv. 9 (3), 443–453 (1975)].MathSciNetMATHGoogle Scholar
  41. 41.
    S. M. Voronin, “On the functional independence of the Dirichlet L-function,” Acta Arith. 27, 493–503 (1975).MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    S. M. Voronin, “Analytic properties of generating Dirichlet functions of arithmetical objects,” Doctoral (Phys.–Math.) Dissertation (Steklov Math. Inst., Moscow, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Šiauliai UniversityŠiauliaiLithuania
  3. 3.Šiauliai State CollegeŠiauliaiLithuania

Personalised recommendations