Thermal Engineering

, Volume 66, Issue 3, pp 210–218 | Cite as

Numerical Simulation of the Processes of Formation of a Welded Joint with a Pulsed ND:YAG Laser Welding of ZR–1%NB Alloy

  • G. SatyanarayanaEmail author
  • K. L. Narayana
  • B. Nageswara Rao
  • M. S. SlobodyanEmail author
  • M. A. Elkin
  • A. S. Kiselev


In recent years use of Zr-Nb alloys has increased in nuclear and chemical industry due to its corrosion resistance and enhanced strength compared to tin based ones. Welding of zirconium alloys is one of the most critical manufacturing processes for nuclear assembly production. To select suitable welding parameters to achieve quality weld, understanding of temperature and velocity fields during process in fusion zone and heat affected zone are essential. In the present study the Nd:YAG pulsed laser welding of zirconium alloy E110 was simulated using three-dimensional heat and fluid flow model. The convection mode of heat transfer and Marangoni stresses in fusion zone are two important mechanisms in controlling the heat transfer weld bead size. The calculated heating and cooling rates are of typical in laser welding and useful in microstructure study of fusion and heat affected zones. Experiments were carried with varying peak power, pulse frequency and duration using Nd:YAG pulsed laser on 0.5 mm thick sheets of E110 to form butt joints. The comparison of the results shows that the weld geometry is well matched with the numerical model.


heat transfer laser beam welding pulsed lasers solidification zirconium alloys 


  1. 1.
    Quality and Reliability Aspects in Nuclear Power Reactor Fuel Engineering (Int. At. Energy Agency, Vienna, 2015), in Ser.: IAEA Nuclear Energy Series, No. NF-G-2.1.Google Scholar
  2. 2.
    M. S. Slobodyan, “Methods of creation of permanent zirconium alloy joints in reactor art: A review,” Tsvetn. Met. 10, 91–98 (2016).CrossRefGoogle Scholar
  3. 3.
    R. Terrence Webster, “Welding of zirconium alloys,” in ASM Handbook, Vol. 6: Welding, Brazing, and Soldering, Ed. by D. L. Olson, T. A. Siewert, S. Liu, and G. R. Edwards (ASM Int., Metals Park, OH, 1993), pp. 787–788.Google Scholar
  4. 4.
    P. Rudling, A. Strasser, and F. Garzarolli, Welding of Zirconium Alloys (Adv. Nucl. Technol. Int., Skultuna, Sweden, 2007).Google Scholar
  5. 5.
    S. S. Kim, C. Y. Lee, and M. S. Yang, “Investigation on Nd:YAG laser weldability of Zircaloy-4 end cap closure for nuclear fuel elements,” J. Korean Nucl. Soc. 33, 175–183 (2001).Google Scholar
  6. 6.
    Q. Wan, X. Bai, and X. Liu, “Impact of yttrium ion implantation on corrosion behavior of laser beam welded Zircaloy-4 in sulfuric acid solution,” Appl. Surf. Sci. 252, 1974–1980 (2005).CrossRefGoogle Scholar
  7. 7.
    Q. Wan, X. Bai, and X. Zhang, “Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded Zircaloy-4,” Mater. Res. Bull. 41, 387–395 (2006).CrossRefGoogle Scholar
  8. 8.
    K. Une and S. Ishimoto, “Crystallographic measurement of the β to α phase transformation and δ-hydride precipitation in a laser-welded Zircaloy-2 tube by electron backscattering diffraction,” J. Nucl. Mater. 389, 436–442 (2009).CrossRefGoogle Scholar
  9. 9.
    K. N. Song, S. S. Kim, S. H. Lee, and S. B. Lee, “Laser welding unit for intersection line welding of spacer grid inner straps and its application,” J. Laser Micro/Nanoeng. 4, 11–17 (2009).CrossRefGoogle Scholar
  10. 10.
    K. N. Song, S. D. Hong, S. H. Lee, and H. Y. Park, “Effect of mechanical properties in the weld zone on the structural analysis results of a plate-type heat exchanger prototype and pressurized water reactor spacer grid,” J. Nucl. Sci. Technol. 49, 947–960 (2012).CrossRefGoogle Scholar
  11. 11.
    K. N. Song and S. H. Lee, “Effect of weld properties on the crush strength of the PWR spacer grid,” Sci. Technol. Nucl. Install. 2012, 540285 (2012). doi Google Scholar
  12. 12.
    N. Boutarek, B. Azzougui, D. Saidi, and M. Neggache, “Microstructure change in the interface of CO2 laser welded zirconium alloys,” Phys. Procedia 2, 1159–1165 (2009).CrossRefGoogle Scholar
  13. 13.
    D. H. Jeong and J. H. Kim, “Fatigue characteristics of laser welded Zircaloy thin sheet,” Int. J. Mod. Phys.: Conf. Ser. 6, 367–372 (2012).Google Scholar
  14. 14.
    Q. Han, D. Kim, D. Kim, H. Lee, and N. Kim, “Laser pulsed welding in thin sheets of Zircaloy-4,” J. Mater. Process. Technol. 212, 1116–1122 (2012). doi CrossRefGoogle Scholar
  15. 15.
    Wang Tao, Chuang Cai, Liqun Li, Yanbin Chen, and Yi Ling Wang, “Pulsed laser spot welding of intersection points for Zircaloy-4 spacer grid assembly,” Mater. Des. 52, 487–494 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Livingstone, L. Xiao, E. C. Corcoran, G. A. Ferrier, and K. N. Potter, “Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding),” Nucl. Eng. Des. 284, 97–105 (2015). doi CrossRefGoogle Scholar
  17. 17.
    S. Kim, W. Lee, and D. Kim, “One-step distortion simulation of pulsed laser welding with multi-physics information,” Int. J. Simul. Modell. 14, 85–97 (2015). doi CrossRefGoogle Scholar
  18. 18.
    C. Cai, W. Tao, L. Li, and Y. Chen, “Weld bead formation and corrosion behavior of pulsed laser welded zirconium alloy,” Int. J. Adv. Manuf. Technol. 77, 621–628 (2015).CrossRefGoogle Scholar
  19. 19.
    C. Cai, L. Li, W. Tao, G. Peng, and X. Wang, “Weld bead size, microstructure and corrosion behavior of zirconium alloys joints welded by pulsed laser spot welding,” J. Mater. Eng. Perform. 25, 3783–3792 (2016).CrossRefGoogle Scholar
  20. 20.
    J. Shao and Y. Yan, “Review of techniques for on-line monitoring and inspection of laser welding,” J. Phys. Conf. Ser. 15, 101–107 (2005).CrossRefGoogle Scholar
  21. 21.
    Gao Xiangdong and Chen Yuquan, “Detection of micro gap weld using magnetooptical imaging during laser welding,” Int. J. Adv. Manuf. Technol. 73, 23–33 (2014).CrossRefGoogle Scholar
  22. 22.
    D. Y. You, X. D. Gao, and S. Katayama, “Review of laser welding monitoring,” Sci. Technol. Weld. Joining 19, 181–201 (2014).CrossRefGoogle Scholar
  23. 23.
    P. J. Wang, W. J. Shao, S. H. Gong, P. J. Jia, and G. Li, “High-precision measurement of weld seam based on narrow depth of field lens in laser welding,” Sci. Technol. Weld. Joining 21, 267–274 (2016).CrossRefGoogle Scholar
  24. 24.
    X. Gao, G. Huang, D. You, C. Lan, and N. Zhang, “Magneto-optical imaging deviation model of micro-gap weld joint,” J. Manuf. Syst. 42, 82–92 (2017).CrossRefGoogle Scholar
  25. 25.
    He Xiaocong, “Finite element analysis of laser welding: A state-of-art review,” Mater. Manuf. Processes 27, 1354–1365 (2012).CrossRefGoogle Scholar
  26. 26.
    Parandoush Pedram and Hossain Altab, “A review of modeling and simulation of laser beam machining,” Int. J. Mach. Tools Manuf. 85, 135–145 (2014). doi CrossRefGoogle Scholar
  27. 27.
    A. Paul and T. DebRoy, “Free surface flow and heat transfer in conduction mode laser welding,” Metall. Trans. B 19, 851–858 (1988).CrossRefGoogle Scholar
  28. 28.
    X. He, P. W. Fuerschbach, and T. DebRoy, “Heat transfer and fluid flow during laser spot welding of 304 stainless steel,” J. Phys. D: Appl. Phys. 36, 1388–1398 (2003).CrossRefGoogle Scholar
  29. 29.
    X. He, J. W. Elmer, and T. DebRoy, “Heat transfer and fluid flow in laser microwelding,” J. Appl. Phys. 97, 084909 (2005).CrossRefGoogle Scholar
  30. 30.
    A. De and T. DebRoy, “Improving reliability of heat and fluid flow calculation during conduction mode laser spot welding by multivariable optimization,” Sci. Technol. Weld. Joining 11, 143–153 (2006).CrossRefGoogle Scholar
  31. 31.
    S. Bag, A. Trivedi, and A. De, “Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source,” Int. J. Therm. Sci. 48, 1923–1931 (2009).CrossRefGoogle Scholar
  32. 32.
    W. I. Cho, S. J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of molten pool dynamics in high power disk laser welding,” J. Mater. Process. Technol. 212, 262–275 (2012).CrossRefGoogle Scholar
  33. 33.
    G. G. Roy, J. W. Elmer, and T. DebRoy, “Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam,” J. Appl. Phys. 100, 034903 (2006).CrossRefGoogle Scholar
  34. 34.
    G. Satyanarayana, K. L. Narayana, and Rao B. Nageswara, “Numerical simulations on the laser spot welding of zirconium alloy end plate for nuclear fuel bundle assembly,” Lasers Manuf. Mater. Process. 5, 53–70 (2018).CrossRefGoogle Scholar
  35. 35.
    ANSYS Fluent 16 User’s Guide (ANSYS, 2015).Google Scholar
  36. 36.
    V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transfer 30, 1709–1719 (1987). doi CrossRefGoogle Scholar
  37. 37.
    D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transfer 13, 297–318 (1988).CrossRefGoogle Scholar
  38. 38.
    A. Jalali and A. F. Najafi, “Numerical modeling of the solidification phase change in a pipe and evaluation of the effect of boundary conditions,” J. Therm. Sci. 19, 419–424 (2010).CrossRefGoogle Scholar
  39. 39.
    M. R. Frewin and D. A. Scott, “Finite element model of pulsed laser welding,” Weld. J. (Miami, FL, U. S.) 78, 15–22 (1999).Google Scholar
  40. 40.
    Thermo-Physical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data (Int. At. Energy Agency, Vienna, 2008).Google Scholar
  41. 41.
    T. DebRoy and S. A. David, “Physical processes in fusion welding,” Rev. Mod. Phys. 67, 85–112 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • G. Satyanarayana
    • 1
    Email author
  • K. L. Narayana
    • 1
  • B. Nageswara Rao
    • 1
  • M. S. Slobodyan
    • 2
    Email author
  • M. A. Elkin
    • 2
  • A. S. Kiselev
    • 2
  1. 1.Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Green Fields, VaddeswaramGunturIndia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations