Thermal Engineering

, Volume 64, Issue 13, pp 994–1006 | Cite as

Application of Artificial Thunderstorm Cells for the Investigation of Lightning Initiation Problems between a Thundercloud and the Ground

  • A. G. Temnikov
  • L. L. Chernensky
  • A. V. Orlov
  • N. Y. Lysov
  • D. S. Zhuravkova
  • O. S. Belova
  • T. K. Gerastenok
Article
  • 4 Downloads

Abstract

The results of the experimental application of artificial thunderstorm cells of negative and positive polarities for the investigation of the lightning initiation problems between the thundercloud and the ground using model hydrometeor arrays are presented. Possible options of the initiation and development of a discharge between the charged cloud and the ground in the presence of model hydrometeors are established. It is experimentally shown that groups of large hydrometeors of various shapes significantly increase the probability of channel discharge initiation between the artificial thunderstorm cell and the ground, especially in the case of positive polarity of the cloud. The authors assume that large hail arrays in the thundercloud can initiate the preliminary breakdown stage in the lower part of the thundercloud or initiate and stimulate the propagation of positive lightning from its upper part. A significant effect of the shape of model hydrometeors and the way they are grouped on the processes of initiation and stimulation of the channel discharge propagation in the artificial thunderstorm cell of negative or positive polarity–ground gap is experimentally established. It is found that, in the case of negative polarity of a charged cloud, the group of conductive cylindrical hydrometeors connected by a dielectric string more effectively initiates the channel discharge between the artificial thunderstorm cell and the ground. In the case of positive polarity of the artificial thunderstorm cell, the best effect of the channel discharge initiation is achieved for model hydrometeors grouped together by the dielectric tape. The obtained results can be used in the development of the method for the directed artificial lightning initiation between the thundercloud and the ground.

Keywords

artificial thunderstorm positive and negative polarity cell thundercloud lightning initiation experimental study group of model hydrometeors cloud and channel discharges shape of hydrometeors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Rakov and F. Rachidi, “Overview of Recent Progress in Lightning Research and Lightning Protection,” IEEE Trans. Electromagn. Compat. 51, 428−442 (2009).Google Scholar
  2. 2.
    V. A. Rakov, “A review of recent progress in studying physics of lightning,” in Proc. 7th All-Russ. Conf. on Atmospheric Electricity, St. Petersburg, Russia, Sept. 24–28, 2012 (Gl. Geofiz. Obs. im. A. I. Voeikova, St. Petersburg, 2012).Google Scholar
  3. 3.
    P. Laroche, “Recent progress and open questions on the physics of lightning,” in Proc. 13th Int. Conf. on Atmospheric Electricity, Beijing, China, Aug. 13–17, 2007 (ICAE, Beijing, 2007).Google Scholar
  4. 4.
    A. V. Gurevich, G. M. Milikh, and R. A. Roussel- Dupre, “Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm,” Phys. Lett. A 165, 463–468 (1992).CrossRefGoogle Scholar
  5. 5.
    A. V. Gurevich and K. P. Zybin, “Runaway breakdown and electric discharges in thunderstorms,” Phys.-Usp. 171, 1119–1140 (2001).CrossRefGoogle Scholar
  6. 6.
    A. V. Gurevich and A. Karashtin, “Runaway breakdown and hydrometeors in lightning initiation,” Phys. Rev. Lett. 110, 185005 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Dubinova, C. Rutjes, U. Ebert, S. Buitink, O. Scholten, and G. T. N. Trinh, “Prediction of lightning inception by large ice particles and extensive air showers,” Phys. Rev. Lett. 115, 015002 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Petersen, M. Bailey, J. Hallett, and W. Beasley, “Laboratory investigation of corona initiation by ice crystals and its importance to lightning,” Q. J. R. Meteorol. Soc. 141, 1283‒1293 (2014).CrossRefGoogle Scholar
  9. 9.
    V. Mazur, L. H. Ruhnke, S. Grzybowski, C. D. Taylor, and D. A. Petersen, “Addressing the hydrometeor theory of lightning initiation with experiments in a highvoltage laboratory,” in Proc. 15th Int. Conf. on Atmospheric Electricity (ICAE2014), Norman, OK, June 15–20, 2014 (ICAE, 2014), p. 180.Google Scholar
  10. 10.
    V. Mazur, C. D. Taylor, and D. A. Petersen, “Simulating electrodeless discharge from a hydrometeor array,” J. Geophys. Res.: Atmos. 120, 10879–10889 (2015).CrossRefGoogle Scholar
  11. 11.
    T. J. Clancy, C. G. Brown, M. M. Ong, and G. A. Clark, “Lightning protection certification for high explosives facilities at Lawrence Livermore National Laboratory,” in Proc. IEEE Antenna and Propagation Int. Symp. 2006, Albuquerque, NM, July 9–14, 2006 (IEEE, New York, NY, 2006).Google Scholar
  12. 12.
    E. Renni, E. Krausmann, G. Antonioni, S. Bonvicini, G. Spadoni, and V. Cozzani, “Risk assessment of major accidents triggered by lightning events,” AIDIC Conf. Ser. 9, 233–242 (2009).Google Scholar
  13. 13.
    A. Galvan and C. Gomes, “Protection of oil storage tanks against direct lightning strikes: self protection scheme or standalone LPS,” in Proc. XII Int. Symp. on Lightning Protection, Belo Horizonte, Brazil, 2013, pp. 392–396.Google Scholar
  14. 14.
    M. E. Morris, et al., “Rocket-triggered lightning studies for the protection of critical assets,” IEEE Trans. Ind. Appl. 30, 791–804 (1994).CrossRefGoogle Scholar
  15. 15.
    M. Bejleri, V. A. Rakov, M. A. Uman, et al., “Triggered lightning testing of an airport runway lightning system,” IEEE Trans. Electromagn. Compat. 46, 96–101 (2004).CrossRefGoogle Scholar
  16. 16.
    Lightning: Principles, Instruments and Applications. Review of Modern Lightning Research, Ed. by H. D. Betz, U. Schumann, and P. Laroche (Springer-Verlag, Dordrecht, 2009).Google Scholar
  17. 17.
    E. M. Bazelyan and Yu. P. Raĭzer, “The mechanism of lightning attraction and the problem of lightning initiation by lasers,” Phys.-Usp. 170, 701–716 (2000).CrossRefGoogle Scholar
  18. 18.
    J. Kasparian, R. Ackermann, Y.-B. André, et al., “Progress towards lightning control using lasers,” J. Eur. Opt. Soc. 3, 08035 (2008).CrossRefGoogle Scholar
  19. 19.
    V. V. Apollonov, “High power lasers and new applications,” Int. J. Eng. Res. Dev. 11 (3), 34–50 (2012).Google Scholar
  20. 20.
    L. G. Kachurin, Physical Principles of Atmospheric Processes Modification (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  21. 21.
    M. Brook, G. Armstrong, R. P. H. Winder, B. Vonnegut, and C. B. Moore, “Artificial initiation of lightning discharges,” J. Geophys. Res. 66, 3967–3969 (1961).CrossRefGoogle Scholar
  22. 22.
    V. Mazur, C. D. Taylor, and D. A. Petersen, “Simulation of lightning initiation from hydrometeors,” in Proc. Asia-Pac. Int. Conf. on Lightning (APL 2015), Nagoya, Japan, Jun. 23–27, 2015 (APL, 2015).Google Scholar
  23. 23.
    A. G. Temnikov, A. V. Orlov, V. N. Bolotov, and Yu. V. Tkach, “Studies of the parameters of a spark discharge between an artificial charged water-aerosol cloud and the ground,” Tech. Phys. 50, 868–875 (2005).CrossRefGoogle Scholar
  24. 24.
    A. G. Temnikov, “Using of artificial clouds of charged water aerosol for investigations of physics of lightning and lightning protection,” in Proc. 2012 IEEE Int. Conf. on Lightning Protection (ICLP), Vienna, Austria, Sept. 2–7, 2012 (IEEE, New York, 2012). doi 10.1109/ICLP. 2012.6344279Google Scholar
  25. 25.
    A. G. Temnikov, “Investigation of peculiarities of discharge formation from the system of artificial charged aerosol clouds of negative polarity,” Electr. Power Syst. Res. 113, 3–9 (2014).CrossRefGoogle Scholar
  26. 26.
    V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, Cambridge, MA, 2003).CrossRefGoogle Scholar
  27. 27.
    M. D. Nguyen and S. Michnowski, “On the initiation of lightning discharge in a cloud. 2. The lightning initiation on precipitation particles,” J. Geophys. Res.: Atmos. 101, 26675–26680 (1996).CrossRefGoogle Scholar
  28. 28.
    A. Nag and V. A. Rakov, “Some inferences on the role of lower positive charge region in facilitating different types of lightning,” Geophys. Res. Lett. 36, L05815 (2009).CrossRefGoogle Scholar
  29. 29.
    A. M. Blyth, H. J. Christian, W. Deierling, S. M. Ellis, A. M. Gadian, and J. Latham, “Derivation of thunderstorm ice hydrometeor characteristics from lightning measurements,” in Proc. 12th Int. Conf. on Atmospheric Electricity, Versal, France, June 9–13, 2003 (ONERA, 2003).Google Scholar
  30. 30.
    T. Wu, Y. Takayanagi, T. Funaki, S. Yoshida, T. Ushio, Z.-I. Kawasaki, T. Morimoto, and M. Shimizu, “Preliminary breakdown pulses of cloud-to-ground lightning in winter thunderstorms in Japan,” J. Atmos. Sol.- Terr. Phys. 102, 91–98 (2013).CrossRefGoogle Scholar
  31. 31.
    A. Nag, V. A. Rakov, D. Tsalikis, and J. A. Cramer, “On phenomenology of compact intracloud lightning discharges,” J. Geophys. Res.: Atmos. 115, 14115 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. G. Temnikov
    • 1
  • L. L. Chernensky
    • 1
  • A. V. Orlov
    • 1
  • N. Y. Lysov
    • 1
  • D. S. Zhuravkova
    • 1
  • O. S. Belova
    • 1
  • T. K. Gerastenok
    • 1
  1. 1.National Research University Moscow Power Engineering Institute (NIU MPEI)MoscowRussia

Personalised recommendations