Skip to main content
Log in

Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Barinov and S. A. Sovalov, “Modal control of modes of power systems,” Elektrichestvo, No. 8, 1–6 (1986).

    Google Scholar 

  2. E. A. Mikrin, N. E. Zubov, and V. N. Ryabchenko, Matrix Methods in Theory and Practice of Automatic Aircraft Control Systems (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2016) [in Russian].

    Google Scholar 

  3. W. K. Gawronski, Dynamics and Control of Structures: A Modal Approach (Springer-Verlag, New York, 1998).

    Book  MATH  Google Scholar 

  4. V. A. Venikov, Electromechanical Transients in Electric Systems (Vysshaya Shkola, Moscow, 1985) [in Russian].

    Google Scholar 

  5. M. J. Gibbard, P. Pourbeik, and D. J. Vowles, Small-Signal Stability, Control and Dynamic Performance of Power Systems (Univ. of Adelaide Press, Adelaide, 2015).

    Book  Google Scholar 

  6. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965; Fizmatlit, Moscow, 1970).

    MATH  Google Scholar 

  7. M. Sh. Misrikhanov and V. N. Ryabchenko, “The quadratic eigenvalue problem in electric power systems,” Autom. Remote Control 67, 698–720 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Soc. Ind. Appl. Math., Philadelphia, PA, 2011).

    Book  MATH  Google Scholar 

  9. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations (Fizmatlit, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  10. E. V. Tuzlukova, Candidate’s Dissertation in Engineering (Moscow Power Engineering Univ., Moscow, 2004).

    Google Scholar 

  11. Yu. V. Sharov, “Development of the analysis method of static stability of electric power systems,” Elektrichestvo, No. 1 (2017).

  12. L. N. Trefethen and M. Embree, Spectra and Pseudospectra (Princeton Univ. Press, Princeton, 2005).

    MATH  Google Scholar 

  13. M. Sh. Misrikhanov and Yu. V. Sharov, “Estimation of disturbances influence on stability of the electric power system,” Vestn. MEI, No. 5, 42–48 (2009).

    Google Scholar 

  14. P. M. Anderson and A. A. Fouad, Power System Control and Stability (Iowa State Univ. Press, Ames, IA, 1977; Energiya, Moscow, 1980).

    Google Scholar 

  15. M. Sh. Misrikhanov, V. F. Sitnikov, and Yu. V. Sharov, “Modal synthesis of regulators based on FACTS devices,” Elektrotekhnika, No. 10, 22–29 (2007).

    Google Scholar 

  16. M. Sh. Misrikhanov and Yu. V. Sharov, “Modal-optimal control of electric power facilities,” Vestn. IGEU, No. 4, 83–98 (2004).

    Google Scholar 

  17. M. Sh. Misrikhanov, V. F. Sitnikov, and Yu. V. Sharov, “Optimal regulators based on FACTS devices for a decentralized model of united power system,” Vestn. MEI, No. 3, 35–41 (2009).

    Google Scholar 

  18. Yu. V. Sharov, “Nonlinear modal interaction in electric power systems,” Elektrichestvo, No. 12 (2016).

  19. H. M. Shanechi, N. Pariz, and E. Vaahedi, “General nonlinear modal representation of large scale power systems,” IEEE Trans. Power Syst. 18, 1103–1109 (2003).

    Article  Google Scholar 

  20. V. Vittal, N. Bhatia, and A. A. Fouad, “Analysis of the inter-area mode phenomenon in power systems following large disturbances,” IEEE Trans. Power Syst. 6, 1515–1521 (1991).

    Article  Google Scholar 

  21. S. K. Starrett and A. A. Fouad, “Nonlinear measures of mode-machine participation,” IEEE Trans. Power Syst. 13, 389–394 (1994).

    Article  Google Scholar 

  22. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (MTsNMO, Moscow, 2012; Springer-Verlag, New York, 2012).

    Google Scholar 

  23. A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications (World Sci., Singapore, 2003).

    Book  MATH  Google Scholar 

  24. A. Goriely, “Painlevé analysis and normal forms theory,” Phys. D 152–153, 124–144 (2001).

    Article  MATH  Google Scholar 

  25. A. A. Mailybaev and A. P. Seiranyan, “Interaction of eigenvalues under variation of parameters,” Dokl. Math. 68, 466–470 (2003).

    Google Scholar 

  26. A. P. Seyranian, O. N. Kirillov, and A. A. Mailybaev, “Coupling of eigenvalues of complex matrices at diabolic and exceptional points,” J. Phys. A: Math. Gen. 38, 1723–1740 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Dobson, “Strong resonance effects in normal form analysis and subsynchronous resonance,” in Proc. IREP Symp. Bulk Power System Dynamics and Control V — Security and Reliability in a Changing Environment, Onomichi, Japan, Aug. 26–31, 2001 (IREP, 2001).

    Google Scholar 

  28. V. Auvray, I. Dobson, and L. Wehenkel, “Modifying eigenvalue interactions near weak resonance,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS '04), Vancouver, Canada, May 23–26, 2004 (IEEE, New York, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Sharov.

Additional information

Original Russian Text © J.V. Sharov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Energetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharov, J.V. Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems. Therm. Eng. 64, 971–981 (2017). https://doi.org/10.1134/S0040601517130080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601517130080

Keywords

Navigation