Thermal Engineering

, Volume 64, Issue 13, pp 971–981 | Cite as

Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems

  • J. V. Sharov


Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.


static or dynamic stability stability margin algebra-differential equations linearization Jacobi matrix eigenvalues modal analysis generalized transition function controllability control law synthesis centralized or distributed control Poincare-Dulac normal form nonlinear modal interaction strong or weak resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Barinov and S. A. Sovalov, “Modal control of modes of power systems,” Elektrichestvo, No. 8, 1–6 (1986).Google Scholar
  2. 2.
    E. A. Mikrin, N. E. Zubov, and V. N. Ryabchenko, Matrix Methods in Theory and Practice of Automatic Aircraft Control Systems (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2016) [in Russian].Google Scholar
  3. 3.
    W. K. Gawronski, Dynamics and Control of Structures: A Modal Approach (Springer-Verlag, New York, 1998).CrossRefMATHGoogle Scholar
  4. 4.
    V. A. Venikov, Electromechanical Transients in Electric Systems (Vysshaya Shkola, Moscow, 1985) [in Russian].Google Scholar
  5. 5.
    M. J. Gibbard, P. Pourbeik, and D. J. Vowles, Small-Signal Stability, Control and Dynamic Performance of Power Systems (Univ. of Adelaide Press, Adelaide, 2015).CrossRefGoogle Scholar
  6. 6.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965; Fizmatlit, Moscow, 1970).MATHGoogle Scholar
  7. 7.
    M. Sh. Misrikhanov and V. N. Ryabchenko, “The quadratic eigenvalue problem in electric power systems,” Autom. Remote Control 67, 698–720 (2006).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems (Soc. Ind. Appl. Math., Philadelphia, PA, 2011).CrossRefMATHGoogle Scholar
  9. 9.
    V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Calculations (Fizmatlit, Moscow, 1984) [in Russian].MATHGoogle Scholar
  10. 10.
    E. V. Tuzlukova, Candidate’s Dissertation in Engineering (Moscow Power Engineering Univ., Moscow, 2004).Google Scholar
  11. 11.
    Yu. V. Sharov, “Development of the analysis method of static stability of electric power systems,” Elektrichestvo, No. 1 (2017).Google Scholar
  12. 12.
    L. N. Trefethen and M. Embree, Spectra and Pseudospectra (Princeton Univ. Press, Princeton, 2005).MATHGoogle Scholar
  13. 13.
    M. Sh. Misrikhanov and Yu. V. Sharov, “Estimation of disturbances influence on stability of the electric power system,” Vestn. MEI, No. 5, 42–48 (2009).Google Scholar
  14. 14.
    P. M. Anderson and A. A. Fouad, Power System Control and Stability (Iowa State Univ. Press, Ames, IA, 1977; Energiya, Moscow, 1980).Google Scholar
  15. 15.
    M. Sh. Misrikhanov, V. F. Sitnikov, and Yu. V. Sharov, “Modal synthesis of regulators based on FACTS devices,” Elektrotekhnika, No. 10, 22–29 (2007).Google Scholar
  16. 16.
    M. Sh. Misrikhanov and Yu. V. Sharov, “Modal-optimal control of electric power facilities,” Vestn. IGEU, No. 4, 83–98 (2004).Google Scholar
  17. 17.
    M. Sh. Misrikhanov, V. F. Sitnikov, and Yu. V. Sharov, “Optimal regulators based on FACTS devices for a decentralized model of united power system,” Vestn. MEI, No. 3, 35–41 (2009).Google Scholar
  18. 18.
    Yu. V. Sharov, “Nonlinear modal interaction in electric power systems,” Elektrichestvo, No. 12 (2016).Google Scholar
  19. 19.
    H. M. Shanechi, N. Pariz, and E. Vaahedi, “General nonlinear modal representation of large scale power systems,” IEEE Trans. Power Syst. 18, 1103–1109 (2003).CrossRefGoogle Scholar
  20. 20.
    V. Vittal, N. Bhatia, and A. A. Fouad, “Analysis of the inter-area mode phenomenon in power systems following large disturbances,” IEEE Trans. Power Syst. 6, 1515–1521 (1991).CrossRefGoogle Scholar
  21. 21.
    S. K. Starrett and A. A. Fouad, “Nonlinear measures of mode-machine participation,” IEEE Trans. Power Syst. 13, 389–394 (1994).CrossRefGoogle Scholar
  22. 22.
    V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (MTsNMO, Moscow, 2012; Springer-Verlag, New York, 2012).Google Scholar
  23. 23.
    A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications (World Sci., Singapore, 2003).CrossRefMATHGoogle Scholar
  24. 24.
    A. Goriely, “Painlevé analysis and normal forms theory,” Phys. D 152–153, 124–144 (2001).CrossRefMATHGoogle Scholar
  25. 25.
    A. A. Mailybaev and A. P. Seiranyan, “Interaction of eigenvalues under variation of parameters,” Dokl. Math. 68, 466–470 (2003).Google Scholar
  26. 26.
    A. P. Seyranian, O. N. Kirillov, and A. A. Mailybaev, “Coupling of eigenvalues of complex matrices at diabolic and exceptional points,” J. Phys. A: Math. Gen. 38, 1723–1740 (2005).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    I. Dobson, “Strong resonance effects in normal form analysis and subsynchronous resonance,” in Proc. IREP Symp. Bulk Power System Dynamics and Control V — Security and Reliability in a Changing Environment, Onomichi, Japan, Aug. 26–31, 2001 (IREP, 2001).Google Scholar
  28. 28.
    V. Auvray, I. Dobson, and L. Wehenkel, “Modifying eigenvalue interactions near weak resonance,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS '04), Vancouver, Canada, May 23–26, 2004 (IEEE, New York, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.National Research University Moscow Power Engineering Institute (NIU MPEI)MoscowRussia

Personalised recommendations