Advertisement

Thermal Engineering

, Volume 64, Issue 13, pp 1032–1037 | Cite as

Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil

  • P. A. Butyrin
  • G. G. Gusev
  • D. V. Mikheev
  • F. N. Shakirzianov
Article

Abstract

The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.

Keywords

katkon (capacitor-coil) frequency characteristics physical modeling filter-compensating device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Butyrin, G. G. Gusev, V. V. Kuzhman, and D. V. Mikheev, “Mathematical and physical modeling of a filtering and compensating device based on katkon,” Elektrichestvo, No. 11, 58–62 (2014).Google Scholar
  2. 2.
    P. A. Butyrin, G. G. Gusev, V. V. Kuzhman, D. V. Mikheev, and F. N. Shakirzyanov, “Mathematical model of filter compensating devices based on harmonic linearization of katkon magnetic conductor characteristic,” Vestn. MEI, No. 5, 79–84 (2015).Google Scholar
  3. 3.
    K. S. Demirchyan and G. G. Gusev, “Synthesis of equivalent circuits of a coil with self-compensation of reactive power,” Izv. Akad. Nauk SSSR. Energ. Transport, No. 2, 3–10 (1987).Google Scholar
  4. 4.
    P. A. Butyrin, G. G. Gusev, D. V. Mikheev, and F. N. Shakirzyanov, “Algorithm for determination of parameters of katkon—An optimization element of power grid modes,” Izv. Ross. Akad. Nauk. Energ., No. 2, 69–75 (2015).Google Scholar
  5. 5.
    I. V. Zakharov, Doctoral Dissertation in Engineering (Almaty Univ. of Power Engineering and Telecommunications, Almaty, 2007).Google Scholar
  6. 6.
    P. A. Butyrin, G. G. Gusev, D. V. Mikheev, and F. N. Shakirzyanov, Patent RF No. 167845. MPK H02J 3/01 (2006.01), Izobret. Poleznye Modeli, No. 1 (2017).Google Scholar
  7. 7.
    P. A. Butyrin, G. G. Gusev, V. V. Kuzhman, and O. V. Tolcheev, Patent RF No. 128033. MPK H02J 3/01 (2006.01), Izobret. Poleznye Modeli, No. 13 (2013).Google Scholar
  8. 8.
    G. G. Gusev, D. V. Mikheev, and F. N. Shakirzyanov, Patent RF No. 155111. MPK H02J 3/00 (2006.01), Izobret. Poleznye Modeli, No. 26 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • P. A. Butyrin
    • 1
  • G. G. Gusev
    • 1
  • D. V. Mikheev
    • 1
  • F. N. Shakirzianov
    • 1
  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussia

Personalised recommendations