Skip to main content
Log in

Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber

  • Steam Turbine, Gas Turbine, Steam-Gas Plants and Accessory Equipment
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The paper presents results of determination of natural acoustic frequencies of a gas-turbine plant annular combustion chamber model using 3D-simulation. At the beginning, a calculation procedure for determining natural acoustic frequencies of the gas-turbine plant combustion chamber was worked out. The effect of spatial inhomogeneity of the flow parameters (fluid composition, pressure, temperature) arising in combustion and some geometrical parameters (cooling holes of the flame tube walls) on the calculation results is studied. It is found that the change of the fluid composition in combustion affects the acoustic velocity not more than 5%; therefore, the air with a volume variable temperature can be taken as a working fluid in the calculation of natural acoustic frequencies. It is also shown that the cooling holes of the flame tube walls with diameter less than 2 mm can be neglected in the determination of the acoustic modes in the frequency range of up to 1000 Hz. This reduces the number of the grid-model elements by a factor of six in comparison with a model that considers all of the holes. Furthermore, a method of export of spatial inhomogeneity of the flow parameters from a CFD solver sector model to the annular combustion chamber model in a modal solver is presented. As a result of the obtained model calculation, acoustic modes of the combustion chamber in the frequency range of up to 1000 Hz are determined. For a standard engine condition, a potentially dangerous acoustic mode with a frequency close to the ripple frequency of the precessing vortex core, which is formed behind the burner device of this combustion chamber, is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Lefebvre and D. R. Ballal, Gas Turbine Combustion: Alternative Fuels and Emissions (CRC, 2010).

    Book  Google Scholar 

  2. V. M. Larionov and R. G. Zaripov, Self-Oscillations of Gas in Plants with Combustion (Kazan. Gos. Tekh. Univ., Kazan, 2003).

    Google Scholar 

  3. E. Giacomazzi, “The importance of operational flexibility in gas turbine power plants,” Energia, Ambiente Innovazione, No. 6, 58–63 (2013).

    Google Scholar 

  4. O. M. Umurhan, “Exploration of fundamental matters of acoustic instabilities in combustion chambers,” in Center for Turbulence Research Annual Briefs 1999 (Cent. for Turbul. Res., Stanford, 1999), pp. 85–98.

    Google Scholar 

  5. V. P. Gerasimenko and N. B. Nalesnyi, “Vibrational burning in GTE combustion chambers,” Visn. Nats. Tekh. Univ. “KhPI”, No. 5, 53–58 (2006).

    Google Scholar 

  6. Y. Huang and V. Yang, “Dynamics and stability of leanpremixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).

    Article  Google Scholar 

  7. N. Syred, “A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems,” Prog. Energy Combust. Sci. 32, 93–161 (2006).

    Article  Google Scholar 

  8. N. V. Leont’ev, Application of the ANSYS System for Solving Problems of Modal and Harmonic Analysis (Nizhegorod. Gos. Univ., Nizhny Novgorod, 2006) [in Russian].

    Google Scholar 

  9. S. Khrulev, “Acoustic analysis in ANSYS Mechanical 15.0,” SAPR Grafika, No. 8, 58–59 (2014).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Dynamics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

    Google Scholar 

  11. M. Caraeni, R. K. Devaki, M. Aroni, M. Oswald, and D. Caraeni, “Efficient acoustic modal analysis for industrial CFD,” in Proc. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, Jan. 5–8, 2009 (Am. Inst. for Aeronaut. and Astronaut., 2009).

    Google Scholar 

  12. G. Campa, E. Cosatto, and S. Camporeale, “Thermoacoustic analysis of combustion instability importing RANS data,” in Proc. 2012 COMSOL Conf., Milan, Italy, Oct. 10–12, 2012 (COMSOL, 2012).

    Google Scholar 

  13. P. Wolf, G. Staffelbach, L. Y. Gicquel, J. D. Müller, and T. Poinsot, “Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers,” Combust. Flame 159, 3398–3413 (2012).

    Article  Google Scholar 

  14. D. A. Akhmedzyanov and A. E. Kishalov, “Calculations of complex geometric node modules of aircraft gas-turbine engines in the software package ANSYS CFX,” Vestn. Ufim. Gos. Aviats. Tekh. Univ. 13, 48–56 (2009).

    Google Scholar 

  15. S. G. Matveev, V. M. Anisimov, I. A. Zubrilin, O. V. Kolomzarov, and N. S. Mironov, “Determination of thermal state and modification of the flame tube cooling system with the help of three-dimensional modeling methods,” Vestn. Samar. Gos. Aerokosm. Univ. im. Akad. S. P. Koroleva (Nats. Issled. Univ.) 14, 119–128 (2015).

    Google Scholar 

  16. D. Yu. Bantikov, Yu. S. Eliseev, V. N. Lavrov, A. A. Pchelyakov, D. G. Fedorchenko, and Yu. I. Tsybizov, “Results of primary operation of NK-37 engine low emission combustion system,” Vestn. Samar. Gos. Aerokosm. Univ. im. Akad. S. P. Koroleva (Nats. Issled. Univ.), No. 3–2, 9–14 (2013).

    Google Scholar 

  17. V. N. Lavrov, A. M. Postnikov, N. V. Tsererin, Yu. I. Tsybizov, and V. V. Belyaev, “Experience of design and lines of further improvement of gas turbine engine low-emission combustion chambers,” Vestn. Samar. Gos. Aerokosm. Univ. im. Akad. S. P. Koroleva (Nats. Issled. Univ.), No. 2, 65–70 (2002).

    Google Scholar 

  18. V. N. Lavrov, A. M. Postnikov, Yu. I. Tsybizov, G. D. Mal’chikov, V. V. Grebnev, and A. V. Morozov, “The development of the system for low emission fuel burning in gas turbine engines,” Vestn. Samar. Gos. Aerokosm. Univ. im. Akad. S. P. Koroleva (Nats. Issled. Univ.), No. 2, 118–127 (2007).

    Google Scholar 

  19. ANSYS Version 15.0 (ANSYS, Canonsburg, PA, 2013).

  20. C. Q. Howard and B. S. Cazzolato, Acoustic Analyses Using MATLAB® and ANSYS® (CRC, 2014).

    Google Scholar 

  21. D. W. Herrin, ANSYS Tutorial. Slides to Accompany Lectures in Vibro-Acoustic Design in Mechanical Systems (Univ. of Kentucky, Lexington, KY, 2012).

    Google Scholar 

  22. V. L. Yakushev, V. N. Simbirkin, A. V. Filimonov, “Seismic search mode for natural oscillation modes in the STARK ES software package,” Vestn. Kibern., No. 11, 151–157 (2012).

    Google Scholar 

  23. ANSYS Fluent Theory Guide 15.0 (ANSYS, Canonsburg, PA, 2013).

  24. Yu. A. Knysh and A. F. Uryvskii, “Precession model of a swirling jet’s vortex core,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 3, 41–44 (1984).

    Google Scholar 

  25. I. A. Zubrilin, D. N. Dmitriev, S. S. Matveev, and S. G. Matveev, “Numerical investigation of the nonreacting swirling flow structure downstream of industrial gas turbine burner with the central body,” in Proc. of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, Canada, June 15–19, 2015 (Am. Soc. Mech. Eng., 2015), Vol. 4A, Paper No. GT2015-42181; Combustion 12, 13–18 (2015).

    Google Scholar 

  26. Y. Huang and V. Yang, “Dynamics and stability of leanpremixed swirl-stabilized combustion,” Prog. Energy Combust. Sci. 35, 293–364 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zubrilin.

Additional information

Original Russian Text © I.A. Zubrilin, N.I. Gurakov, R.A. Zubrilin, S.G. Matveev, 2017, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubrilin, I.A., Gurakov, N.I., Zubrilin, R.A. et al. Modeling of natural acoustic frequencies of a gas-turbine plant combustion chamber. Therm. Eng. 64, 372–378 (2017). https://doi.org/10.1134/S0040601517050093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601517050093

Keywords

Navigation