Recovery of Tartaric Acid from Aqueous Solution by Liquid Membrane Technique: Optimization by Taguchi Design of Experimental Methodology

Abstract

The transport of tartaric acid through a bulk liquid membrane (BLM) was investigated. The effect of solvent type, carrier concentration, temperature, salt type and salt concentration in the feed phase on the transport efficiency of tartaric acid through the BLM was studied. 27 experiments were performed based on the Taguchi design of experiment, and the results were analyzed with Minitab 16 software. The results indicated that the maximum extraction (92.53%) was obtained under optimum conditions including methyl isobutyl ketone as a solvent, trioctylamine at a concentration of 30% (v/v) as a carrier, a temperature of 25°C and potassium nitrate at a concentration of 30% (w/v) as a salt in the feed phase. The results illustrated that the experimental error compared with the predicted value by the software was 6.69%; therefore, the Taguchi model has an acceptable capability of prediction for the tartaric acid extraction process. In addition, two irreversible first-order sequential chemical reactions were used to explain the kinetic model of the pertraction process in BLM systems.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    İnci, İ., Asci, Y.S., and Tuyun, A.F., Reactive extraction of L (+) tartaric acid by amberlite LA-2 in different solvents, E-J. Chem., 2011, vol. 8, p. 509. https://doi.org/10.1155/2011/167945

    Article  Google Scholar 

  2. 2

    Konstantinos, N.K., Patsios, S.I., and Karabelas, A.J., Tartaric acid recovery from winery lees using cation exchange resin: Optimization by response surface methodology, Sep. Purif. Technol., 2016, vol. 165, p. 32. https://doi.org/10.1016/j.seppur.2016.03.040

    CAS  Article  Google Scholar 

  3. 3

    Uslu, H., Liquid + liquid equilibria of the (water + tartaric acid + alamine 336 + organic solvents) at 298.15K, Fluid Phase Equilib., 2007, vol. 253, p. 12. https://doi.org/10.1016/j.fluid.2006.12.019

    CAS  Article  Google Scholar 

  4. 4

    Marinova, M., Kyuchoukov, G., Albet, J., Molinier, J., and Malmary, G., Separation of tartaric and lactic acids by means of solvent extraction, Sep. Purif. Technol., 2004, vol. 37, p. 199. https://doi.org/10.1016/S1383-5866(03)00218-1

    CAS  Article  Google Scholar 

  5. 5

    Malmary, G.H., Mourgues, J.F., Bakti, J., Conte, T.S., Achour, D., Smagghe, F.J., and Molinier, J.R., Partition coefficients of tartaric and malic acids between dilute aqueous solutions and amine extractants dissolved in various diluents, J. Chem. Eng. Data, 1993, vol. 38, p. 537. https://doi.org/10.1021/je00012a014

    CAS  Article  Google Scholar 

  6. 6

    Poposka, F.A., Prochazka, J., Tomovska, R., Nikolovski, K., and Grizo, A., Extraction of tartaric acid from aqueous solutions with tri-iso-octylamine (HOSTAREX A 324), Chem. Eng. Sci., 2000, vol. 55, p. 1591. https://doi.org/10.1016/S0009-2509(99)00416-9

    CAS  Article  Google Scholar 

  7. 7

    Marinova, M., Albet, J., Molinier, J., and Kyuchoukov, G., Specific influence of the modifier (1-decanol) on the extraction of tartaric acid by different extractants, Ind. Eng. Chem. Res., 2005, vol. 44, p. 6534. https://doi.org/10.1021/ie050159q

    CAS  Article  Google Scholar 

  8. 8

    Marchitan, N., Cojocaru, C., Mereuta, A., Duca, G., Cretescu, I., and Gonta, M., Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: A comparison between response surface methodology and artificial neural network, Sep. Purif. Technol., 2010, vol. 75, p. 273. https://doi.org/10.1016/j.seppur.2010.08.016

    CAS  Article  Google Scholar 

  9. 9

    Marchitan, N., Reactive extraction of tartaric acid, Chem. J. Mold., 2009, vol. 4, no. 2, p. 28. https://doi.org/10.19261/cjm.2009.04(2).15

    Article  Google Scholar 

  10. 10

    Lee, E.G., Moon, S.H., and Chang, Y.K., Lactic acid recovery using two-stage electrodialysis and its modelling, J. Membr. Sci., 1998, vol. 145, p. 53. https://doi.org/10.1016/S0376-7388(98)00065-9

    CAS  Article  Google Scholar 

  11. 11

    Kim, Y.H. and Moon, S.H., Lactic acid recovery from fermentation broth using one-stage electrodialysis, J. Chem. Technol. Biotechnol., 2001, vol. 76, p. 169. https://doi.org/10.1002/jctb.368

    CAS  Article  Google Scholar 

  12. 12

    Kontogiannopoulos, K.N., Patsios, S.I., Mitrouli, S.T., and Karabelas, A.J., Tartaric acid and polyphenols recovery from winery waste lees using membrane separation processes, J. Chem. Technol. Biotechnol., 2017, vol. 92, no. 12, p. 2934. https://doi.org/10.1002/jctb.5313

    CAS  Article  Google Scholar 

  13. 13

    Kocherginsky, N.M., Yang, Q., and Seelam, L., Recent advances in supported liquid membrane technology, Sep. Purif. Technol., 2007, vol. 53, p. 171. https://doi.org/10.1016/j.seppur.2006.06.022

    CAS  Article  Google Scholar 

  14. 14

    Irdemez, S., Topcu, N., Yıldız, Y.S., and Demircioglu, N., Effect of organic solvent type on the removal of nitrate ion using liquid membrane technique, Stoch. Environ. Res. Risk Assess., 2006, vol. 21, p. 175. https://doi.org/10.1007/s00477-006-0054-5

    Article  Google Scholar 

  15. 15

    Ulbrich, M. and Marr, R., Aqueous liquid membranes – State of the art, Int. Chem. Eng., 1994, vol. 34, p. 277.

    Google Scholar 

  16. 16

    Reddy, T.R., Ramkumar, J., Chandramouleeswaran, S., and Reddy, A.V.R., Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier, J. Membr. Sci., 2010, vol. 351, p. 11. https://doi.org/10.1016/j.memsci.2010.01.021

    CAS  Article  Google Scholar 

  17. 17

    Diaconu, I., Mirea, C.M., Ruse, E., and Nechifor, G., Selective recovery of phenolic derivatives through the technique of liquid membranes, Environ. Eng. Manage. J., 2015, vol. 14, no. 3, p. 625.

    Article  Google Scholar 

  18. 18

    Gherrou, A., and Kerdjoudj, H., Removal of gold as Au(Tu)2 + complex with a supported liquid membrane containing macrocyclic polyethers ligands as carriers, Desalination, 2002, vol, 144, p. 231. https://doi.org/10.1016/S0011-9164(02)00317-X

    CAS  Article  Google Scholar 

  19. 19

    Zha, F.F., Fane, A.G., and Fell, C.J.D., Liquid membrane processes for gallium recovery from alkaline solutions, Ind. Eng. Chem. Res., 1995, vol, 34, p. 1799. https://doi.org/10.1021/ie00044a031

    CAS  Article  Google Scholar 

  20. 20

    Serban, E.A., Diaconu, I., Ruse, E., Batrinescu, G., Nechifor, G., and Nita-Lazar, M., Bulk liquid membranes for separation and recovery of pharmaceutical products, Rev. Chim. (Bucharest, Rom.), 2018, vol. 69, no. 11, p. 4157.

  21. 21

    Abed, K.M., Al-Hemiri, A.A., Separation of alkaloids from plants by bulk liquid membrane technique using rotating discs contactor, Diyala J. Eng. Sci., 2015, vol. 8, p. 785.

    Google Scholar 

  22. 22

    Ren, Zh., Lv, Y., and Zhang, W., Facilitated transport of penicillin G by bulk liquid membrane with TBP as carrier, Appl. Biochem. Biotechnol., 2009, vol. 152, p. 286. https://doi.org/10.1007/s12010-008-8242-z

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Joglekar, H.G., Rahman, I., Babu, S., Kulkarni, B.D., and Joshi, A., Comparative assessment of downstream processing options for lactic acid, Sep. Purif. Technol., 2006, vol. 52, p. 1. https://doi.org/10.1016/j.seppur.2006.03.015

    CAS  Article  Google Scholar 

  24. 24

    Wasewar, K.L., Yawarkal, A.A., Moulijn, A.J., and Pangarkar, V., Fermentation of glucose to lactic acid coupled with reactive extraction: A review, Ind. Eng. Chem. Res., 2004, vol. 43, p. 5969. https://doi.org/10.1016/j.ces.2003.11.023

    CAS  Article  Google Scholar 

  25. 25

    Anvari, M. and Khayati, G., Separation and purification of rebaudioside A from extract of Stevia Rebaudiana leaves by macroporous adsorption resins, Pol. J. Chem. Technol., 2016, vol. 18, no. 1, p. 127. https://doi.org/10.1515/pjct-2016-0019

    CAS  Article  Google Scholar 

  26. 26

    Khayati, G., Gilani, H.G., and Keyvani, Z.S., Extraction of Cu (II) ions from aqueous media using PEG/Sulphate salt aqueous two-phase system, Sep. Sci. Technol., 2016, vol. 51, p. 601. https://doi.org/10.1080/01496395.2015.1119853

    CAS  Article  Google Scholar 

  27. 27

    Khayati, G., Talesh, S.A., and Yazdanshenas, M., Partitioning of propionic acid in polyethylene glycol/different salts of sulfate aqueous two-phase systems, Sep. Sci. Technol., 2014, vol. 49, p. 2741. https://doi.org/10.1080/01496395.2014.941490

    CAS  Article  Google Scholar 

  28. 28

    Tamada, J.A., Kertes, A.S., and King C.J., Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling, Ind. Eng. Chem. Res., 1990, vol. 29, p. 1319. https://doi.org/10.1021/ie00103a035

    CAS  Article  Google Scholar 

  29. 29

    Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, Kislik, V.S., Ed., Amsterdam: Elsevier, 2010.

    Google Scholar 

  30. 30

    Izatt, R.M., McBride, D.W., Jr., Brown, P.R., Lambf, J.D., and Christensen, J.J., The influence of halocarbon solvent on macrocycle-mediated cation transport through liquid membranes, J. Membr. Sci., 1986, vol. 28, no. 1, p. 69. https://doi.org/10.1016/S0376-7388(00)82200-0

    CAS  Article  Google Scholar 

  31. 31

    Juang, R.S., Huang, R.H., and Wu, R.T., Separation of citric and lactic acids in aqueous solutions by solvent extraction and liquid membrane processes, J. Membr. Sci., 1997, vol. 136, p. 89. https://doi.org/10.1016/S0376-7388(97)00176-2

    CAS  Article  Google Scholar 

  32. 32

    Tamada, J.A. and King, C.J., Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations, Ind. Eng. Chem. Res., 1990, vol. 29, p. 1333. https://doi.org/10.1021/ie00103a037

    CAS  Article  Google Scholar 

  33. 33

    Wang, W., Wan, J., Ning, B., Xia, J., and Cao, X., Preparation of a novel light-sensitive copolymer and its application in recycling aqueous two-phase systems, J. Chromatogr., 2008, vol. 1205, p. 171. https://doi.org/10.1016/j.chroma.2008.07.074

    CAS  Article  Google Scholar 

  34. 34

    Roy, K. and Lahiri, S., Extraction of Hg(I), Hg(II) and methylmercury using polyethylene glycol based aqueous biphasic system, Appl. Radiat. Isot., 2009, vol. 67, no. 10, p. 1781. https://doi.org/10.1016/j.apradiso.2009.05.018

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Zafarani-Moattar, M.T. and Gasemi, J., Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol and ammonium dihydrogen phosphate or diammonium hydrogen phosphate. Experiment and correlation, Fluid Phase Equilib., 2002, vol. 198, p. 281. https://doi.org/10.1016/S0378-3812(01)00805-6

    CAS  Article  Google Scholar 

  36. 36

    Khayati, G. and Gholitabar, A., Liquid−liquid equilibrium of hydrophilic alcohols with three different salts of chloride: Experiment and correlation, J. Chem. Eng. Data, 2016, vol. 61, p. 1454. https://doi.org/10.1021/acs.jced.5b00771

    CAS  Article  Google Scholar 

  37. 37

    Marcus, Y., Thermodynamics of solvation of ions: Part 5. Gibbs free energy of hydration at 298.15 K, J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 18, p. 2995. https://doi.org/10.1039/FT9918702995

    CAS  Article  Google Scholar 

  38. 38

    Rogers, R.D., Bond, A.H., Bauer, C.B., Zhang, J., and Griffin, S.T., Metal ion separations in polyethylene glycol-based aqueous biphasic systems: Correlation of partitioning behavior with available thermodynamic hydration data, J. Chromatogr. B: Biomed. Sci. Appl., 1996, vol. 680, nos. 1–2, p. 221. https://doi.org/10.1016/0378-4347(95)00447-5

    CAS  Article  Google Scholar 

  39. 39

    Szczepański, P. and Diaconu, I., Transport of p-nitrophenol through an agitated bulk liquid membrane, Sep. Sci. Technol., 2012, vol. 47, p. 1725. https://doi.org/10.1080/01496395.2012.659316

    CAS  Article  Google Scholar 

  40. 40

    Joglekar, A.M. and May, A.T., Product excellence through design of experiments, Cereal Foods World, 1987, vol. 32, p. 857.

    Google Scholar 

  41. 41

    Liou, R.M., Chen, S.H., and Huang, C.H., Catalytic wet peroxide oxidation of p-nitrophenol by Fe (III) supported on resin, Water Sci. Technol., 2010, vol. 62, no. 8, p. 1879. https://doi.org/10.2166/wst.2010.370

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Zaggout, F.R. and Ghalwa, N.A., Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode, J. Environ. Manage., 2008, vol. 86, p. 291. https://doi.org/10.1016/j.jenvman.2006.12.033

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gholam Khayati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pourkhanali, K., Babaie, S. & Khayati, G. Recovery of Tartaric Acid from Aqueous Solution by Liquid Membrane Technique: Optimization by Taguchi Design of Experimental Methodology. Theor Found Chem Eng 54, 1195–1204 (2020). https://doi.org/10.1134/S0040579520060196

Download citation

Keywords:

  • tartaric acid
  • bulk liquid membrane
  • solvent extraction
  • Taguchi orthogonal array
  • design of experiment