Skip to main content
Log in

Interphase Distribution of Thiophene, Toluene, and o-Xylene in the Hexane–Polymer–Water Extraction System

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction of sulfur-containing and aromatic compounds from light hydrocarbons using water-soluble polymers has been studied experimentally and theoretically. During experimental studies, the extraction of thiophene, toluene, and o-xylene from n-hexane using extraction systems based on polyethylene glycols with different molecular weights, polypropylene glycol 425, and polyvinylpyrrolidone 3500 has been investigated. Based on mathematical modeling, the dependences of distribution coefficients for toluene and o-xylene on the concentration of the polymer using an extraction system based on polyethylene glycol 400 have been derived. The results of this study can be used in the development of new extraction processes for purifying light hydrocarbon fractions from sulfur-containing and aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Królikowski, M. and Lipińska, A., Separation of thiophene, or benzothiophene from model fuel using glycols. Liquid–liquid phase equilibria and oxidative desulfurization study, Fluid Phase Equilib., 2019, vol. 482, pp. 11–23. https://doi.org/10.1016/j.fluid.2018.10.017

    Article  CAS  Google Scholar 

  2. Kianpour, E. and Azizian, S., Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions, Fuel, 2014, vol. 137, pp. 36–40. https://doi.org/10.1016/j.fuel.2014.07.096

    Article  CAS  Google Scholar 

  3. Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.T., and Dlugogorski, B.Z., Hydrodesulfurization of thiophene over γ-Mo2N catalyst, Mol. Catal., 2018, vol. 459, pp. 21–30. https://doi.org/10.1016/j.mcat.2018.07.008

    Article  CAS  Google Scholar 

  4. Dehghan, R. and Anbia, M., Zeolites for adsorptive desulfurization from fuels: A review, Fuel Process. Technol., 2017, vol. 167, pp. 99–116. https://doi.org/10.1016/j.fuproc.2017.06.015

    Article  CAS  Google Scholar 

  5. Zhang, X.F., Wang, Z., Feng, Y., et al., Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr), Fuel, 2018, vol. 234, pp. 256–262. https://doi.org/10.1016/j.fuel.2018.07.035

    Article  CAS  Google Scholar 

  6. Ibrahim, M.H., Hayyan, M., Hashim, M.A., and Hayyan, A., The role of ionic liquids in desulfurization of fuels: A review, Renewable Sustainable Energy Rev., 2017, vol. 76, pp. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194

    Article  CAS  Google Scholar 

  7. Zhao, K., Cheng, Y., Liu, H., et al., Extractive desulfurization of dibenzothiophene by a mixed extractant of N,N-dimethylacetamide, N,N-dimethylformamide and tetramethylene sulfone: Optimization by Box–Behnken design, RSC Adv., 2015, vol. 5, no. 81, pp. 66013–66023. https://doi.org/10.1039/C5RA12305D

    Article  CAS  Google Scholar 

  8. Song, Z., Yu, D., Zeng, Q., et al., Effect of water on extractive desulfurization of fuel oils using ionic liquids: A COSMO-RS and experimental study, Chin. J. Chem. Eng., 2017, vol. 25, no. 2, pp. 159–165. https://doi.org/10.1016/j.cjche.2016.08.029

    Article  CAS  Google Scholar 

  9. Nicolae, M., Oprea, F., and Fendu, E.M., Dipropylene glycol as a solvent for the extraction of aromatic hydrocarbons. Analysis and evaluation of the solvency properties and simulation of the extraction processes, Chem. Eng. Res. Des., 2015, vol. 104, pp. 287–295. https://doi.org/10.1016/j.cherd.2015.08.021

    Article  CAS  Google Scholar 

  10. Gao, J., Zhu, S., Dai, Y., Xiong, C., Li, C., Yang, W., and Jiang, X., Performance and mechanism for extractive desulfurization of fuel oil using modified polyethylene glycol, Fuel, 2018, vol. 233, pp. 704–713. https://doi.org/10.1016/j.fuel.2018.06.101

    Article  CAS  Google Scholar 

  11. Bhutto, A.W., Abro, R., Gao, S., Abbas, T., Chen, X., and Yu, G., Oxidative desulfurization of fuel oils using ionic liquids: A review, J. Taiwan Inst. Chem. Eng., 2016, vol. 62, pp. 84–97. https://doi.org/10.1016/j.jtice.2016.01.014

    Article  CAS  Google Scholar 

  12. Lima, F., Gouvenaux, J., Branco, L.C., Silvestre, A.J.D., and Marrucho, I.M., Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents, Fuel, 2018, vol. 234, pp. 414–421. https://doi.org/10.1016/j.fuel.2018.07.043

    Article  CAS  Google Scholar 

  13. Chen, Y., Song, H., Meng, H., Lu, Y., Li, C., Lei, Z., and Chen, B., Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel, Fuel Process. Technol., 2017, vol. 158, pp. 20–25. https://doi.org/10.1016/j.fuproc.2016.10.019

    Article  CAS  Google Scholar 

  14. Zakhodyaeva, Yu.A., Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of monocarboxylic acids with binary extracting agents based on amines and quaternary ammonium bases, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, pp. 739–743. https://doi.org/10.1134/S0040579511050186

    Article  CAS  Google Scholar 

  15. Kholkin, A.I., Belova, V.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Solvent extraction of weak acids in binary extractant systems, Sep. Sci. Technol., 2013, vol. 48, no. 9, pp. 1417–1425. https://doi.org/10.1080/01496395.2012.745000

    Article  CAS  Google Scholar 

  16. Zakhodyaeva, Yu.A., Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of monocarboxylic acids by trioctylmethylammonium di(2-ethylhexyl)phosphate, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 413–418. https://doi.org/10.1134/S0040579512040094

    Article  CAS  Google Scholar 

  17. Khol'kin, A.I., Zakhodyaeva, Yu.A., Voshkin, A.A., and Belova, V.V., Interphase distribution of weak acids in systems with binary extractants, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, pp. 453–460. https://doi.org/10.1134/S0040579513040088

    Article  CAS  Google Scholar 

  18. Voshkin, A.A., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Shkinev, V.M., Interphase distribution of aromatic acids in the polyethylene glycol–sodium sulfate–water system, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 890–893. https://doi.org/10.1134/S0040579518050287

    Article  CAS  Google Scholar 

  19. Zakhodyaeva, Yu.A., Rudakov, D.G., Solov’ev, V.O., Voshkin, A.A., and Timoshenko, A.V., Liquid–liquid equilibrium of aqueous two-phase system composed of poly(ethylene oxide) 1500 and sodium nitrate, J. Chem. Eng. Data, 2019, vol. 64, no. 3, pp. 1250–1255. https://doi.org/10.1021/acs.jced.8b01138

    Article  CAS  Google Scholar 

  20. de Oliveira, W.C.M., Rodrigues, G.D., Mageste, A.B., and de Lemos, L.R., Green selective recovery of lanthanum from Ni-MH battery leachate using aqueous two-phase systems, Chem. Eng. J., 2017, vol. 322, pp. 346–352. https://doi.org/10.1016/j.cej.2017.04.044

    Article  CAS  Google Scholar 

  21. Zakhodyaeva, Yu.A., Izyumova, K.V., Solov’eva, M.S., and Voshkin, A.A., Extraction separation of the components of leach liquors of batteries, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 883–887. https://doi.org/10.1134/S0040579517050244

    Article  CAS  Google Scholar 

  22. Valadares, A., Valadares, C.F., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Separation of cobalt and nickel in leach solutions of spent nickel-metal hydride batteries using aqueous two-phase systems (ATPS), Hydrometallurgy, 2018, vol. 181, pp. 180–188. https://doi.org/10.1016/j.hydromet.2018.09.006

    Article  CAS  Google Scholar 

  23. da Silveira Leite, D., Carvalho, P.L.G., de Lemos, L.R., Mageste, A.B., and Rodrigues, G.D., Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems, Hydrometallurgy, 2017, vol. 169, pp. 245–252. https://doi.org/10.1016/j.hydromet.2017.01.002

    Article  CAS  Google Scholar 

  24. Phong, W.N., Show, P.L., Chow, Y.H., and Ling, T.C., Recovery of biotechnological products using aqueous two phase systems, J. Biosci. Bioeng., 2018, vol. 126, no. 3, pp. 273–281. https://doi.org/10.1016/j.jbiosc.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  25. Wu, X., Li, G., Yang, H., and Zhou, H., Study on extraction and separation of butyric acid from clostridium tyrobutyricum fermentation broth in PEG/Na2SO4 aqueous two-phase system, Fluid Phase Equilib., 2015, vol. 403, pp. 36–42. https://doi.org/10.1016/j.fluid.2015.05.047

    Article  CAS  Google Scholar 

  26. de Araujo Sampaio, D., Mafra, L.I., Yamamoto, C.I., et al., Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study, J. Chem. Thermodyn., 2016, vol. 98, pp. 86–94. https://doi.org/10.1016/j.jct.2016.03.004

    Article  CAS  Google Scholar 

  27. Nadar, S.S., Pawar, R.G., and Rathod, V.K., Recent advances in enzyme extraction strategies: A comprehensive review, Int. J. Biol. Macromol., 2017, vol. 101, pp. 931–957. https://doi.org/10.1016/j.ijbiomac.2017.03.055

    Article  CAS  PubMed  Google Scholar 

  28. Frolkova, A.V., Akishina, A.A., and Frolkova, A.K., Multicomponent systems with three-phase splitting region, Tonkie Khim. Tekhnol., 2016, vol. 11, no. 6, p. 15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakhodyaeva.

Additional information

Translated by A. Uteshinsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakhodyaeva, Y.A., Solov’ev, V.O., Zinov’eva, I.V. et al. Interphase Distribution of Thiophene, Toluene, and o-Xylene in the Hexane–Polymer–Water Extraction System. Theor Found Chem Eng 53, 550–555 (2019). https://doi.org/10.1134/S0040579519040298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519040298

Keywords:

Navigation