Skip to main content
Log in

Influence of Characteristics of Nickel Complex Compounds on the Rate of Chemical Deposition and Composition of Nickel–Phosphorus Alloy

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of characteristics of ligands and nickel complex compounds on the rate of the autocatalytic (chemical) deposition of nickel–phosphorus coating and the phosphorus content is considered. It has been established that the charge and complex of the ligand have the highest effect on the rate of process, and charge number and stability of the complex ion have the highest effect on the content of phosphorus in the coating. Mathematical models describing the relationship between the deposition rate, the composition of coatings, and the corresponding ligand parameters are obtained. Recommendations for the selection of the ligand composition of solutions for the chemical deposition of nickel–phosphorus alloy are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Skopintsev, V.D. and Vinokurov, E.G., Teoreticheskie i prikladnye aspekty avtokataliticheskogo formirovaniya pokrytii na osnove splava nikel'–fosfor (Theoretical and Applied Aspects of the Autocatalytic Formation of Coatings Based on the Nickel–Phosphorus Alloy), Moscow: VINITI, 2018.

  2. Sudagar, J., Lian, J., and Sha, W., Electroless nickel, alloy, composite and nano coatings—A critical review, J. Alloys Compd., 2013, vol. 571, no. 15, pp. 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107

    Article  CAS  Google Scholar 

  3. Mallory, G.O. and Hajdu, J.B., Electroless Plating: Fundamentals and Applications, Norwich, N.Y.: American Electroplaters and Surface Finishing Society, 1996.

    Google Scholar 

  4. Shalkauskas, M. and Vashkyalis, A., Khimicheskaya metallizatsiya plastmass (Chemical Metallizing of Plastics), Leningrad: Khimiya, 1977, 2nd ed.

  5. Gokzhaev, M.B., Morgunov, A.V., and Skopintsev, V.D., Optimizing solution composition for the chemical deposition of nickel–copper–phosphorus alloys, Inorg. Mater., 2008, vol. 44, no. 12, pp. 1319–1321. https://doi.org/10.1134/S0020168508120108

    Article  CAS  Google Scholar 

  6. Cavallotti, P.L., Magagnin, L., and Cavallotti, C., Influence of added elements on autocatalytic chemical deposition electroless Ni–P, Electrochim. Acta, 2013, vol. 114, p. 805. https://doi.org/10.1016/j.electacta.2013.09.083

    Article  CAS  Google Scholar 

  7. Salvago, G. and Cavalotti, P.L., Characteristics of the chemical reduction of nickel alloys with hypophosphite, Plating, 1972, vol. 59, no. 7, p. 665.

    CAS  Google Scholar 

  8. Vinokurov, E.G., Morgunov, A.V., and Skopintsev, V.D., Compositional optimization of chemical copper-doped nickel–phosphorus coatings, Inorg. Mater., 2015, vol. 51, no. 8, pp. 788–792. https://doi.org/10.1134/S0020168515070195

    Article  CAS  Google Scholar 

  9. Schlesinger, M., Electroless deposition of nickel, in Modern Electroplating, Hoboken, N.J.: Wiley, 2011, 5th ed., p. 447.

    Google Scholar 

  10. Fujun, L.I., Ding, L.I.U., and Tao, Y.E., Effect of complexing agent on low phosphorus electroless nickel plating, Plat. Finish., 2018, vol. 40, no. 10, p. 6.

    Google Scholar 

  11. Ashtiani, A.A., Faraji, S., Iranagh, S.A., et al., The study of electroless Ni-P alloys with different complexing agents on Ck45 steel substrate, Arabian J. Chem., 2017, vol. 10, suppl. 2, p. S1541. https://doi.org/10.1016/j.arabjc.2013.05.015

    Article  CAS  Google Scholar 

  12. Skopintsev, V.D., Morgunov, A.V., Vinokurov, E.G., and Nevmyatullina, Kh.A., Increasing the production rate of electroless nickel plating, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, p. 26.

    Google Scholar 

  13. Bremner, J.G.M., Nickel plating by chemical reduction, Nature, 1948, vol. 162, p. 183. https://doi.org/10.1038/162183b0

    Article  CAS  Google Scholar 

  14. Cavallotti, P. and Salvago, G., Studies on chemical reduction of nickel and cobalt by hypophosphite. Pt. 2. Characteristics of process, Electrochem. Metall., 1968, vol. 3, no. 3, p. 239.

    CAS  Google Scholar 

  15. Gorbunova, K.M. and Nikiforova, A.A., Reduction of nickel by hypophosphite: The mechanism of the reaction, Zh. Fiz. Khim., 1954, vol. 28, no. 5, p. 896.

    Google Scholar 

  16. Vinokurov, E.G., Thermodynamic probability model of ligand selection in solutions designed for electrodeposition of alloys and multivalent metals, Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 5, pp. 615–619. https://doi.org/10.1134/S2070205110050205

    Article  CAS  Google Scholar 

  17. Vinokurov, E.G., Demidov, A.V., and Bondar’, V.V., Physicochemical model for choosing complexes for chromium-plating solutions based on Cr(III) compounds, Russ. J. Coord. Chem., 2005, vol. 31, no. 1, pp. 14–18. https://doi.org/10.1007/PL00022078

    Article  CAS  Google Scholar 

  18. Vinokurov, E.G., Skopintsev, V.D., Nevmyatullina, Kh.A., and Morgunov, A.V., A resource-saving technology for electroless nickel plating, Khim. Prom-st. Segodnya, 2016, no. 10, p. 18.

  19. Djokic, S.S. and Cavallotti, P.L., Electroless deposition: Theory and applications, Mod. Aspects Electrochem., 2010, vol. 48, p. 251. https://doi.org/10.1007/978-1-4419-5589-0_6

    Article  CAS  Google Scholar 

  20. Vinokurov, E.G., Zhigunov, F.N., Morgunov, A.V., and Skopintsev, V.D., Effect of temperature on the kinetics of electroless nickel plating from glycinate solutions, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 3, p. 40.

    Google Scholar 

  21. Akhnazarova, S.L. and Kafarov, V.V., Metody optimizatsii eksperimenta v khimicheskoi tekhnologii (Experimental Optimization Methods in Chemical Engineering), Moscow: Vysshaya Shkola, 1985.

  22. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.

  23. Timofeeva, E.G., Galkina, G.I., and Korochkina, E.A., Stability constants of the complexes of nickel with monoethanolamine in aqueous solutions, Tr. MKhTI im. D.I. Mendeleeva (Transactions of the Mendeleev Moscow Institute of Chemical Technology), Moscow: Mosk. Khim.-Tekhnol. Inst. im. D.I. Mendeleeva, 1969, vol. 62, p. 262.

    Google Scholar 

  24. Perrin, D.D., Stability Constants of Metal-Ion Complexes: Part B. Organic Ligands, Oxford: Pergamon, 1983.

    Google Scholar 

  25. Moelwyn-Hughes, E.A., The Chemical Statics and Kinetics of Solutions, London: Academic, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Vinokurov.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, E.G., Mukhametova, G.M., Vasil’ev, V.V. et al. Influence of Characteristics of Nickel Complex Compounds on the Rate of Chemical Deposition and Composition of Nickel–Phosphorus Alloy. Theor Found Chem Eng 53, 544–549 (2019). https://doi.org/10.1134/S0040579519040286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519040286

Keywords:

Navigation