Skip to main content
Log in

Adsorption of Phenol from Aqueous Solutions by Bael Furit Shell Activated Carbon: Kinetic, Equilibrium, and Mass Transfer Studies

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The removal of phenol was studied using laboratory bael fruit shell activated carbon (BAC) prepared using bael (Indian plant Aegle marmelos) fruit shell as a precursor. Adsorption of phenol onto BAC was studied in a batch process. Various parameters such as pH, adsorbent dose, initial phenol concentration, and contact time were optimized. Equilibrium contact time and optimum pH were found to be 120 min and 4, respectively. Optimum adsorbent dose was found to be 0.6 g/L. Five kinetic models were used to fit the experimental data, among them Pseudo-second-order kinetic model was found to best fit the adsorption kinetic data. Langmuir isotherm fitted the experimental data of phenol adsorption. The negative value of change in enthalpy showed that the adsorption of phenol onto BAC was an exothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ahmaruzzaman, Md., Adsorption of phenolic compounds on low-cost adsorbents: A review, Adv. Colloid Interface Sci., 2008, vol. 43, nos. 1–2, p. 48.

    Article  CAS  Google Scholar 

  2. Kilic, M., Varol, E.A.M., and Putun, A.E., Adsorptive removal of phenol from aqueous solution on activated carbon prepared from tobacco residues equilibrium, kinetics, and thermodynamics, J. Hazard. Mater., 2011, vol. 189, p. 397.

    Article  CAS  PubMed  Google Scholar 

  3. Radhika, M. and Palanivelu, K., Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent-kinetics and isotherm analysis, J. Hazard. Mater., 2006, vol. 138, p. 116.

    Article  CAS  PubMed  Google Scholar 

  4. Khare, P. and Kumar, A., Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: Process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study, Appl. Water Sci., 2012, vol. 2, p. 317.

    Article  CAS  Google Scholar 

  5. Kumar, S., Zafar, M., Prajapati, J.K., Kumar, S., and Kannepalli, S., Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution, J. Hazard. Mater., 2011, vol. 185, p. 287.

    Article  CAS  PubMed  Google Scholar 

  6. Mohanty, K., Das, D., and Biswas, M.N., Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J., 2005, vol. 115, p. 121.

    Article  CAS  Google Scholar 

  7. Wang, S.L., Tzou, Y.M., Lu, Y.H., and Sheng, G., Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazard. Mater., 2007, vol. 147, p. 313.

    Article  CAS  PubMed  Google Scholar 

  8. Lin, S.-H. and Juang, R-S., Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, J. Environ. Manage., 2009, vol. 90, p. 1336.

    Article  CAS  PubMed  Google Scholar 

  9. Babel, S. and Kurniawan, T.A., Low cost adsorbent for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., 2003, vol. 97, p. 219.

    Article  CAS  PubMed  Google Scholar 

  10. Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., Olivares, D. V. J., and Constantino, F.-P., Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse, Chem. Eng. J., 2008, vol. 144, p. 42.

    Article  CAS  Google Scholar 

  11. Tan, I.A.W., Ahmad, A.L., and Hameed, B.H., Adsorption, isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 2009, vol. 164, p. 473.

    Article  CAS  PubMed  Google Scholar 

  12. Streat, M., Patrick, J.W., and Camporro Pérez, M.J., Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons, Water Res., 1995, vol. 29, p. 467.

    Article  CAS  Google Scholar 

  13. Mubarik, S., Saeed, A., Mehmood, Z., and Iqbal, M., Phenol adsorption by charred sawdust of sheesham (Indian rosewood; Dalbergia sissoo) from single, binary and ternary contaminated solutions, J. Taiwan Inst. Chem. Eng., 2012, vol. 43, p. 926.

    Article  CAS  Google Scholar 

  14. Barman, G., Kumar, A., and Khare, P., Removal of Congo Red by carbonized low-cost adsorbents: Process parameter optimization using a Taguchi experimental design, J. Chem. Eng. Data, 2011, vol. 56, p. 4102.

    Article  CAS  Google Scholar 

  15. Kumar, A., Prasad, B., and Mishra, I.M., Isotherm and kinetics study for acrylic acid removal using powdered activated carbon, J. Hazard. Mater., 2010, vol. 176, p. 774.

    Article  CAS  PubMed  Google Scholar 

  16. Eaton, D., Clesceri, L.S., and Greenberg, A.E., Standard Methods for the Examination of Water and Wastewater, Washington, DC: APHA, 2005, 21st ed.

    Google Scholar 

  17. Vogel, I., A Text Book of Quantitative Inorganic Analysis, London: ELBS, 1969, 3rd ed.

    Google Scholar 

  18. Liu, T., Li, Y.H., Du, Q., Sun, J., Jiao. Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H., and Wu, D., Adsorption of methylene blue from aqueous solution by grapheme, Colloids Surf., B, 2012, vol. 90, p. 197.

    Article  CAS  Google Scholar 

  19. Dabrowski, A., Podkoscielny, P., Hubicki, Z., and Barczak, M., Adsorption of phenolic compounds by activated carbon—A critical review, Chemosphere, 2005, vol. 58, p. 1049.

    Article  CAS  PubMed  Google Scholar 

  20. Yanhui, L., Qiuju, D., Tonghao, L., Jianku, S., Yuqin, J., Yanzhi, X., Linhua, X., Zonghua, W., Wei, Z., Kunlin, W., Hongwei, Z., and Dehai, W., Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto grapheme, Mater. Res. Bull., 2012, vol. 47, p. 1898.

    Article  CAS  Google Scholar 

  21. Saeed, M. and Iqbal, W.H., Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk, J. Hazard. Mater., 2009, vol. 168, p. 1467.

    Article  CAS  PubMed  Google Scholar 

  22. Boehm, H.P., Surface oxides on carbon and their analysis: A critical assessment, Carbon, 2002, vol. 40, p. 40145.

    Article  Google Scholar 

  23. Dutta, S., Basu, J.K., and Ghar, R.N., Studies on adsorption of p-nitrophenol on charred saw-dust, Sep. Purif. Technol., 2001, vol. 21, p. 227.

    Article  CAS  Google Scholar 

  24. Nadavala, S.K., Swayampakula, K., Boddu, V.M., and Abburi, K., Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan calcium alginate blended beads, J. Hazard. Mater., 2009, vol. 162, p. 482.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar, N.S. and Min, K., Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling, Chem. Eng. J., 2011, vol. 168, p. 562.

    Article  CAS  Google Scholar 

  26. Altenor, S., Carene, B., Emmanuel, E., Lambert, J., and Ehrhardt, J-J.S., Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater., 2009, vol. 165, p. 1029.

    Article  CAS  PubMed  Google Scholar 

  27. Mall, I.D., Srivastava, V.C., and Agarwal, N.K., Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—Kinetic study and equilibrium isotherm analyses, Dyes Pigm., 2006, vol. 69, no. 3, p. 210.

    Article  CAS  Google Scholar 

  28. Mall, I.D., Srivastava, V.C., Agarwal, N.K., and Mishra, I.M., Removal of Congo Red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses, Chemosphere, 2005, vol. 61, no. 4, p. 492.

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., and Mishra, I.M., Adsorptive removals of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids Surf., A, 2006, vol. 272, nos. 1–2, p. 89.

    Article  CAS  Google Scholar 

  30. Tutem, E., Apak, R., and Unal, C.F., Adsorptive removal of chlorophenols from water by bituminous shale, Water Res., 1998, vol. 32, p. 2315.

    Article  CAS  Google Scholar 

  31. Boyd, G.E., Adamson, A.E., and Meyers, L.S., The exchange of adsorption ions from aqueous solutions by organic zeolites: II. Kinetics, J. Am. Chem. Soc., 1947, vol. 69, p. 2836.

    Article  CAS  PubMed  Google Scholar 

  32. Kalavathy, M.H., Karthikeyan, T., Rajgopal, S., and Miranda, L.R., Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust, J. Colloid Interface Sci., 2005, vol. 292, p. 354.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, K.V., Ramamurthi, V., and Sivanesan, S., Biosorption of malachite green, a cationic dye onto Pithophora sp., fresh water algae, Dyes Pigm., 2006, vol. 69, p. 102.

    Article  CAS  Google Scholar 

  34. Mondal, M.K., Singh, S., Umareddy, M., and Dasgupta, B., Removal of Orange G from aqueous solution by hematite: Isotherm and mass transfer studies, Korean J. Chem. Eng., 2010, vol. 27, p. 1811.

    Article  CAS  Google Scholar 

  35. Parfitt, G.D. and Rochester, C.H., Adsorption from Solution at the Solid/Liquid Interface, Orlando, Fla.: Academic, 1983.

    Google Scholar 

  36. Jain, A.K., Gupta, V.K., Suha, S., and Jain, S., Removal of chlorophenols using industrial wastes, Environ. Sci. Technol., 2004, vol. 38, p. 1195.

    Article  CAS  PubMed  Google Scholar 

  37. Recovery Processes for Biological Materials, Kennedy, J.F. and Cabral, J.M.S., Eds., Chichester: Wiley, 1993.

    Google Scholar 

  38. Longhinotti, E., Pozza, F.L., Sanchez, M.N., Klug, M., Laranjeira, M.C.M., and Fávere, V.T., Adsorption of anionic dyes on the biopolymer chitin, J. Braz. Chem. Soc., 1998, vol. 9, p. 435.

    Article  CAS  Google Scholar 

  39. Young, D.M. and Crowell, A.D., Physical Adsorption of Gases, London: Butterworths, 1962.

    Google Scholar 

  40. Lagergren, S., Zur theories der sogenannten adsorption geloster stoffe, Kungliga Svenska s Vetenskapsak ademines Handlingar, 1898, vol. 24, p. 1.

  41. Ho, Y.S. and McKay, G., Pseudo-second order model for sorption processes, Process Biochem., 1999, vol. 34, p. 451.

    Article  CAS  Google Scholar 

  42. Weber, W.J., and Morris, J.C., Kinetics of adsorption on carbon from solution, J. San. Eng. Div., ASCE, 1963, vol. 89, p. 31.

  43. Cheung, W., Porter, J.F., and McKay, G., Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 2002, vol. 19, p. 55.

    Article  Google Scholar 

  44. Onal, Y., Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot, J. Hazard. Mater., 2006, vol. 137, p. 1719.

    Article  CAS  PubMed  Google Scholar 

  45. Aharoni, C., Sideman, S., and Hoffer, E., Adsorption of phosphate ions by colloid ion-coated alumina, J. Chem. Technol. Biotechnol., 1979, vol. 29, p. 404.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lallan Singh Yadav, Bijay Kumar Mishra & Kumar, A. Adsorption of Phenol from Aqueous Solutions by Bael Furit Shell Activated Carbon: Kinetic, Equilibrium, and Mass Transfer Studies. Theor Found Chem Eng 53, 122–131 (2019). https://doi.org/10.1134/S0040579519010184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519010184

Keywords:

Navigation