Skip to main content
Log in

Phosphonium-based ionic liquids grafted onto silica for CO2 sorption

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Phosphonium-based ionic liquids with varied alkyl chain lengths bearing different anions (Cl, BF 4 and PF 6 ) were prepared and grafted on the commercial silica surface. The modified particles were characterized via FTIR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CO2 sorption/desorption. The effects of the type and activation temperature of silica support, the mole fraction and structure of the grafted ionic liquids on CO2 sorption were discussed in detail. The results indicated that CO2 sorption capacity of the sorbents had little impact on the chain length of the cation, while mainly depended on the anion types. The relationship between the initial mole fraction of ionic liquids and CO2 sorption properties had a non-linear character. Phosponium-cation hexafluorophosphate grafted on type A SiO2 activated under 426 K at ionic liquids/SiO2 feed ratio of 1/1 showed the highest CO2 sorption capacity (6.35 wt %) at 273 K and 100 kPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J.S., Lively, R.P., Huang, D.K., Hillesheim, P.C., Dai, S., and Koros, W.J., A new approach of ionic liquid containing polymer sorbents for post-combustion CO2 scrubbing, Polymer, 2012, vol. 53, pp. 891–894.

    Article  CAS  Google Scholar 

  2. Hasib-ur-Rahman, M., Siaj, M., and Larachia, F., Ionic liquids for CO 2 capture-development and progress, Chem. Eng. Process., 2010, vol. 49, pp. 313–322.

    CAS  Google Scholar 

  3. Sairi, N.A., Yusoff, R., Alias, Y., Alias, Y., and Aroua, M.K., Solubilities of CO2 in aqueous N-methyldiethanolamine and guanidinium trifluoromethanesulfonate ionic liquid systems at elevated pressures, Fluid Phase Equilib., 2010, vol. 300, pp. 89–94.

    Article  Google Scholar 

  4. Mahurin, S.M., Lee, J.S., Baker, G.A., Luo, H., and Dai, S., Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation, J. Membr. Sci., 2010, vol. 353, pp. 177–183.

    Article  CAS  Google Scholar 

  5. Zhang, Y.Q., Zhang, S.J., Lu, X.M., Zhou, Q., Fan, W., and Zhang, X.P., Amino-functionalised phosphonium ionic liquids for CO2 capture, Chem. Eur. J., 2009, vol. 15, pp. 3003–3011.

    Article  CAS  Google Scholar 

  6. Wang, C.M., Luo, X.Y., Luo, H.M., Jiang, D.E., Li, H.R., and Dai, S., Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed., 2010, vol. 50, pp. 4918–4922.

    Article  Google Scholar 

  7. Harper, N.D., Nizio, K.D., Hendsbee, A.D., Masuda, J.D., Robertson, K.N., Murphy, L.J., Johnson, M.B., Pye, C.C., and Clyburne, J.A.C., Survey of carbon dioxide capture in phosphonium-based ionic liquids and end-capped polyethylene glycol using DETA (DETA = diethylenetriamine) as a model absorbent, Ind. Eng. Chem. Res., 2011, vol. 50, pp. 2822–2830.

    Article  CAS  Google Scholar 

  8. Revelli, A.L., Mutelet, F., and Jaubert, J.N., High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether, J. Phys. Chem. B., 2010, vol. 114, pp. 12908–12913.

    Article  CAS  Google Scholar 

  9. Kolding, H., Fehrmann, R., and Riisager, A., CO2 capture technologies: current status and new directions using supported ionic liquid phase (SILP) absorbers, Sci. Chin. Chem., 2012, vol. 55, pp. 1648–1656.

    Article  CAS  Google Scholar 

  10. Zhang, J.M., Zhang, S.J., Dong, K., Zhang, Y.Q., Shen, Y.Q., and Lv, X.M., Supported absorption of CO 2 by tetrabutylphosphonium amino acid ionic liquids, Chem. Eur. J., 2006, vol. 12, pp. 4021–4026.

    Article  CAS  Google Scholar 

  11. Ren, J., Wu, L.B. and Li, B.G., Preparation and CO2 sorption/desorption of N-(3-aminopropyl)aminoethyltributylphosphonium amino acid salt ionic liquids supported into porous silica particles, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 7901–7909.

    Article  CAS  Google Scholar 

  12. Valkenberg, M.H., De Castro, C., and Hölderich, W.F., Immobilisation of ionic liquids on solid supports, Green Chem., 2002, vol. 4, pp. 88–93.

    Article  CAS  Google Scholar 

  13. Khatri, R.A., Chuang, S.S.C., Yee, S., and Gray, M., Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture, Energy Fuels, 2006, vol. 20, pp. 1514–1520.

    Article  CAS  Google Scholar 

  14. Danon, A., Stair, P.C., and Weitz, E., FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species, J. Phys. Chem. C., 2011, vol. 115, pp. 11540–11549.

    Article  CAS  Google Scholar 

  15. Zhang, X.L., Wang, D.F., Zhao, N., Al-Arific, A.S.N., Aouak, T., Al-Othman, Z.A., Wei, W., and Sun, Y.H., Grafted ionic liquid: catalyst for solventless cycloaddition of carbon dioxide and propylene oxide, Catal. Commun., 2009, vol. 11, pp. 43–49.

    Article  Google Scholar 

  16. Han, L., Park S.W., and Park D.W., Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate, Energy Environ. Sci., 2009, vol. 2, pp. 1286–1292.

    Article  CAS  Google Scholar 

  17. Selvam, T., Machoke, A., and Schwieger, W., Supported ionic liquids on non-porous and porous inorganic materials—a topical review, Appl. Catal., A, 2012, vol. 445–446, pp. 92–101.

    Article  Google Scholar 

  18. Modrogan, E., Valkenberg, M.H., and Hoelderich, W.F., Phenol alkylation with isobutene—influence of heterogeneous Lewis and/or Brønsted acid sites, J. Catal., 2009, vol. 261, pp. 177–187.

    Article  CAS  Google Scholar 

  19. Prado, A.G.S., Sales, J.A.A., and Airoldi, C., The increased thermal stability associated with humic acid anchored onto silica gel, J. Therm. Anal. Calorim., 2002, vol. 70, pp. 191–197.

    Article  CAS  Google Scholar 

  20. Scaife, S., Kluson, P., and Quirke, N., Characterization of porous materials by gas adsorption: do different molecular probes give different pore structures? J. Phys. Chem. B, 2000, vol. 104, pp. 313–318.

    Article  CAS  Google Scholar 

  21. Hench, L.L. and West, J.K., The sol-gel process, Chem. Rev., 1990, vol. 90, pp. 33–72.

    Article  CAS  Google Scholar 

  22. Grondein, A. and Belanger, D., Chemical modification of carbon powders with aminophenyl and arylaliphatic amine groups by reduction of in situ generated diazonium cations: applicability of the grafted powder towards CO2 capture, Fuel, 2011, vol. 90, pp. 2684–2693.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Zhu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J.M., Xin, F., Sun, Y.C. et al. Phosphonium-based ionic liquids grafted onto silica for CO2 sorption. Theor Found Chem Eng 48, 787–792 (2014). https://doi.org/10.1134/S0040579514060141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514060141

Keywords

Navigation