Skip to main content
Log in

Equivariant Vector Bundles Over Quantum Projective Spaces

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct equivariant vector bundles over quantum projective spaces using parabolic Verma modules over the quantum general linear group. Using an alternative realization of the quantized coordinate ring of the projective space as a subalgebra in the algebra of functions on the quantum group, we reformulate quantum vector bundles in terms of quantum symmetric pairs. We thus prove the complete reducibility of modules over the corresponding coideal stabilizer subalgebras, via the quantum Frobenius reciprocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “Deformation theory and quantization: I. Deformations of symplectic structures,” Ann. Phys., 111, 61–110 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. Donin and A. Mudrov, “Dynamical Yang–Baxter equation and quantum vector bundles,” Commun. Math. Phys., 254, 719–760 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Mudrov, “Quantum conjugacy classes of simple matrix groups,” Commun. Math. Phys., 272, 635–660 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. T. Ashton and A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups,” J. Math. Sci., 213, 637–650 (2016).

    Article  MATH  Google Scholar 

  5. A. Mudrov, “Contravariant form on tensor product of highest weight modules,” arXiv:1709.08394v6 [math.QA] (2017).

    Google Scholar 

  6. M. Semenov–Tian–Shansky, “Poisson–Lie groups, quantum duality principle, and the quantum double,” in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (Contemp. Math., Vol. 175, P. J. Sally Jr., M. Flato, J. Lepowsky, N. Reshetikhin, and G. J. Zuckerman, eds.), Amer. Math. Soc., Providence, R. I. (1994), pp. 219–248.

    Google Scholar 

  7. J.–P. Serre, “Faisceaux algébriques cohérents,” Ann. Math., 61, 197–278 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Swan, “Vector bundles and projective modules,” Trans. Amer. Math. Soc., 105, 264–277 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Letzter, “Symmetric pairs for quantized enveloping algebras,” J. Algebra, 220, 729–767 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Kolb, “Quantum symmetric Kac–Moody pairs,” Adv. Math., 267, 395–469 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Donin and A. Mudrov, “Method of quantum characters in equivariant quantization,” Commun. Math. Phys., 234, 533–555 (2003); arXiv:math/0204298v3 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. V. G. Drinfeld, “Quantum groups,” J. Soviet Math., 41, 898–915 (1988).

    Article  MathSciNet  Google Scholar 

  13. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge (1994).

    MATH  Google Scholar 

  14. P. Etingof and A. Varchenko, “Dynamical Weyl groups and applications,” Adv. Math., 167, 74–127 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras,” in: Handbook of Algebra (M. Hazewinkel, eds.), Vol. 4, Elsevier, Amsterdam (2006), pp. 109–170.

    Google Scholar 

  16. S. Khoroshkin and O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators,” J. Algebra, 319, 2113–2165 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Karolinsky, A. Stolin, and V. Tarasov, “Equivariant quantization of Poisson homogeneous spaces and Kostant’s problem,” J. Algebra, 409, 362–381 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantization of Lie groups and Lie algebras,” Leningrad Math. J., 1, 193–225 (1990).

    MathSciNet  MATH  Google Scholar 

  19. A. Mudrov, “Characters of the Uq(sl(n))–reflection equation algebra,” Lett. Math. Phys., 60, 283–291 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. P. Kulish and E. K. Sklyanin, “Algebraic structure related to the reflection equation,” J. Phys. A, 25, 5963–5975 (1992); arXiv:hep–th/9209054v1 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Mudrov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 2, pp. 326–340, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrov, A.I. Equivariant Vector Bundles Over Quantum Projective Spaces. Theor Math Phys 198, 284–295 (2019). https://doi.org/10.1134/S0040577919020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919020090

Keywords

Navigation