Skip to main content
Log in

Polarization Tensors for Massive Arbitrary-Spin Particles and the Behrends–Fronsdal Projection Operator

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on theWigner unitary representations for the covering Poincaré group ISL(2,ℂ), we construct spin–tensor wave functions of free massive arbitrary-spin particles satisfying the Dirac–Pauli–Fierz equations. We obtain polarization spin–tensors and indicate conditions that fix the density matrices (Behrends–Fronsdal projection operators), which determine the numerators in the propagators of the fields of such particles. Using such conditions extended to the multidimensional case, we construct a generalization of Behrends–Fronsdal projection operators (for any number D >2 of space–time dimensions) corresponding to a symmetric representation of the D-dimensional Poincaré group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Isaev and M. A. Podoinitsyn, “Two-spinor description of massive particles and relativistic spin projection operators,” Nucl. Phys. B, 929, 452–484 (2018); arXiv:1712.00833v2 [hep-th] (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math., 40, 149–204 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proc. Nat. Acad. Sci. USA, 34, 211–223 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Yu. V. Novozhilov, Introduction to Elementary Particle Theory [in Russian], Nauka, Moscow (1972); English transl. (Intl. Series Monogr. Nat. Philos., Vol. 78), Pergamon, Oxford (1975).

    Google Scholar 

  5. N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory [in Russian], Nauka, Moscow (1987); English transl. (Math. Phys. Appl. Math., Vol. 10), Kluwer Academic, Dordrecht (1990).

    Google Scholar 

  6. Ya. B. Rumer and A. I. Fet, Group Theory and Quantized Fields [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  7. S. Weinberg, “Feynman rules for any spin,” Phys. Rev., 133, B1318–B1332 (1964); “Feynman rules for any spin: II. Massless particles,” Phys. Rev. B, 134, 882–896 (1964).

    Article  ADS  Google Scholar 

  8. P. A. M. Dirac, “Relativistic wave equations,” Proc. Roy. Soc. London Ser. A, 155, 447–459 (1936).

    Article  ADS  MATH  Google Scholar 

  9. M. Fierz, “Über den Drehimpuls von Teilichen mit Ruhemasse null und beliebigem Spin,” Helvetica Phys. Acta, 13, 45–60 (1940).

    MathSciNet  MATH  Google Scholar 

  10. M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. London Ser. A, 173, 211–232 (1939).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. E. Behrends and C. Fronsdal, “Fermi decay for higher spin particles,” Phys. Rev., 106, 345–353 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. D. Ponomarev and A. A. Tseytlin, “On quantum corrections in higher-spin theory in flat space,” JHEP, 1605, 184 (2016); arXiv:1603.06273v3 [hep-th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D. Francia, J. Mourad, and A. Sagnotti, “Current exchanges and unconstrained higher spins,” Nucl. Phys. B, 773, 203–237 (2007); arXiv:hep-th/0701163v2 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C. Fronsdal, “On the theory of higher spin fields,” Nuovo Cimento, 9, 416–443 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Witten, “Perturbative gauge theory as a string theory in twistor space,” Commun. Math. Phys., 252, 189–258 (2004); arXiv:hep-th/0312171v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H. Elvang and Y.-T. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge Univ. Press, Cambridge (2015).

    Book  MATH  Google Scholar 

  17. E. Conde and A. Marzolla, “Lorentz constraints on massive three-point amplitudes,” JHEP, 1609 (2016); arXiv:1601.08113v4 [hep-th] (2016).

    Google Scholar 

  18. E. Conde, E. Joung, and K. Mkrtchyan, “Spinor-helicity three-point amplitudes from local cubic interactions,” JHEP, 1608, 040 (2016); arXiv:1605.07402v2 [hep-th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Marzolla, “The 4D on-shell 3-point amplitude in spinor-helicity formalism and BCFW recursion relations,” PoS(Modave2016), 002 (2017); arXiv:1705.09678v1 [hep-th] (2017).

    Google Scholar 

  20. A.-H. Nima, T.-C. Huang, and Y.-T. Huang, “Scattering amplitudes for all masses and spins,” arXiv: 1709.04891v1 [hep-th] (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Isaev or M. A. Podoinitsyn.

Additional information

This research was supported by the Russian Foundation for Basic Research (Grant No. 16-01-00562).

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 198, No. 1, pp. 101–112, January, 2019. Received January 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, A.P., Podoinitsyn, M.A. Polarization Tensors for Massive Arbitrary-Spin Particles and the Behrends–Fronsdal Projection Operator. Theor Math Phys 198, 89–99 (2019). https://doi.org/10.1134/S0040577919010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577919010069

Keywords

Navigation