Skip to main content
Log in

Nonlocal Reductions of the Ablowitz–Ladik Equation

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Our purpose is to develop the inverse scattering transform for the nonlocal semidiscrete nonlinear Schrödinger equation (called the Ablowitz–Ladik equation) with \(\mathcal{PT}\) symmetry. This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scattering data, and the fundamental analytic solutions. In addition, we study the spectral properties of the associated discrete Lax operator. Based on the formulated (additive) Riemann–Hilbert problem, we derive the one- and two-soliton solutions for the nonlocal Ablowitz–Ladik equation. Finally, we prove the completeness relation for the associated Jost solutions. Based on this, we derive the expansion formula over the complete set of Jost solutions. This allows interpreting the inverse scattering transform as a generalized Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl., Springer, Berlin (2007).

    MATH  Google Scholar 

  2. V. S. Gerdjikov, G. Vilasi, and A. B. Yanovski, Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods (Lect. Notes Phys., Vol. 748), Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  3. V. E. Zakharov, S. V. Manakov, S. P. Novikov and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl., Plenum, New York (1984).

    MATH  Google Scholar 

  4. A. B. Shabat, “Inverse-scattering problem for a system of differential equations,” Funct. Anal. Appl., 9, 244–247 (1975); “An inverse scattering problem,” Funct. Anal. Appl., 15, 1824–1834 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bruschi, S. V. Manakov, O. Ragnisco, and D. Levi, “Evolution equations associated with the discrete analog of the matrix Schrödinger spectral problem solvable by IST,” J. Math. Phys., 22, 2463–2471 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations: Gauge covariant formulation,” Inverse Problems, 2, 51–74 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. E. Zakharov and A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I,” Funct. Anal. Appl., 8, 226–235 (1974); “Integration of nonlinear equations of mathematical physics by the method of inverse scattering: II,” Funct. Anal. Appl., 13, 166–174 (1979).

    Article  MATH  Google Scholar 

  8. M. J. Ablowitz, B. Prinari, and D. A. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (London Math. Soc. Lect. Note Ser., Vol. 302), Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  9. V. A. Atanasov, V. S. Gerdjikov, G. G. Grahovski, and N. A. Kostov, “Fordy–Kulish model and spinor Bose–Einstein condensate,” J. Nonlinear Math. Phys., 15, 291–298 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, and N. A. Kostov, “N-wave interactions related to simple Lie algebras: Z2-reductions and soliton solutions,” Inverse Problems, 17, 999–1015 (2001); arXiv:nlin.SI/0009034v3 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V. S. Gerdjikov, G. G. Grahovski, and N. A. Kostov, “On N-wave type systems and their Gauge equivalent,” Eur. J. Phys. B, 29, 243–248 (2002); arXiv:nlin/0111027v2 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, and T. I. Valchev, “Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces,” Theor. Math. Phys., 167, 740–750 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, and T. I. Valchev, “Polynomial bundles and generalized Fourier transforms for integrable equations on A.III-type symmetric spaces,” SIGMA, 7, 096 (2011).

    MATH  Google Scholar 

  14. G. G. Grahovski, “On the reductions and scattering data for the generalized Zakharov–Shabat systems,” in: Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, 27 June–6 July 2002, M. J. Ablowitz, M. Boiti, F. Pempinelli, and B. Prinari, eds.), World Scientific, Singapore (2003), pp. 71–78

    Chapter  Google Scholar 

  15. G. G. Grahovski and M. Condon, “On the Caudrey–Beals–Coifman system and the gauge group action,” J. Nonlinear Math. Phys., 15 (suppl. 3), 197–208 (2008); arXiv:0710.3302v1 [nlin.SI] (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. P. Fordy and P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras,” Commun. Math. Phys., 89, 427–443 (1983).

    Article  ADS  MATH  Google Scholar 

  17. A. V. Mikhailov, “The reduction problem and the inverse scattering problem,” Phys. D, 3, 73–117 (1981).

    Article  MATH  Google Scholar 

  18. T. I. Valchev, “On Mikhailov’s reduction group,” Phys. Lett. A, 379, 1877–1880 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. V. E. Zakharov, “Exact solutions to the problem of the parametric interaction of three-dimensional wave packets,” Sov. Phys. Dokl., 21, 322–323 (1976).

    ADS  Google Scholar 

  20. M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations,” J. Math. Phys., 16, 598–603 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations and Fourier analysis,” J. Math. Phys., 17, 1011–1018 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. J. Ablowitz and J. F. Ladik, “A nonlinear difference scheme and inverse scattering,” Stud. Appl. Math., 55, 213–229 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. J. Ablowitz, B. Prinari, and D. A. Trubatch, “Discrete vector solitons: Composite solitons, Yang–Baxter maps, and computation,” Stud. App. Math., 116, 97–133 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. J. Ablowitz, G. Biondini, and B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with non-vanishing boundary conditions,” Inverse Problems, 23, 1711–1758 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. G. Biondini and A. Bui, “The Ablowitz–Ladik system with linearizable boundary conditions,” J. Phys. A: Math. Theor., 48, 375202 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. S. Gerdjikov and M. I. Ivanov, “Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form,” Theor. Math. Phys., 52, 676–685 (1982).

    Article  Google Scholar 

  27. V. S. Gerdjikov and M. I. Ivanov, “Block discrete Zakharov–Shabat system I: Generalized Fourier [in Russian] expansions,” Preprint E2-81-811, Joint Inst. Nucl. Res., Dubna (1981); “Block discrete Zakharov-Shabat system II: Hamiltonian structures [in Russian],” Preprint E2-81-812, Joint Inst. Nucl. Res., Dubna (1981).

    Google Scholar 

  28. V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, “Complete integrability of the difference evolution equations [in Russian],” Preprint E2-80-882, Joint Inst. Nucl. Res., Dubna (1981).

    Google Scholar 

  29. V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, “Expansions over the ‘squared’ solutions and difference evolution equations,” J. Math. Phys., 25, 25–34 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Takeno and K. Hori, “A propagating self-localized mode in a one-dimensional lattice with quartic anharmonicity,” J. Phys. Soc. Japan, 59, 3037–3040 (1990).

    Article  ADS  Google Scholar 

  31. V. M. Kenkre and D. K. Campbell, “Self-trapping on a dimer: Time-dependent solutions of a discrete nonlinear Schrödinger equation,” Phys. Rev. B, 34, 4959–4961 (1986).

    Article  ADS  Google Scholar 

  32. Y. Ishimori, “An integrable classical spin chain,” J. Phys. Soc. Japan, 51, 3417–3418 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Papanicoulau, “Complete integrability for a discrete Heisenberg chain,” J. Phys. A: Math. Gen., 20, 3637–3652 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. J. Ablowitz, Y. Ohta, and D. A. Trubatch, “On discretizations of the vector nonlinear Schrödinger equation,” Phys. Lett. A, 253, 287–304 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Bruschi, S. V. Manakov, O. Ragnisco, and D. Levi, “The nonabelian Toda lattice: Discrete analogue of the matrix Schrödinger spectral problem,” J. Math. Phys., 21, 2749–2753 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. T. Tsuchida, H. Ujino, and M. Wadati, “Integrable semi-discretization of the coupled nonlinear Schrödinger equations,” J. Phys. A: Math. Gen., 32, 2239–2262 (1999).

    Article  ADS  MATH  Google Scholar 

  37. V. E. Vekslerchik and V. V. Konotop, “Discrete nonlinear Schrödinger equation under non-vanishing boundary conditions,” Inverse Problems, 8, 889–909 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. V. E. Vekslerchik, “Finite nonlinear Schrödinger chain,” Phys. Lett. A, 174, 285–288 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  39. V. E. Vekslerchik, “Functional representation of the Ablowitz–Ladik hierarchy,” J. Phys. A: Math. Gen., 31, 1087–1099 (1998); “Functional representation of the Ablowitz–Ladik hierarchy: II,” J. Nonlinear Math. Phys., 9, 157–180 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, “Perturbation-induced radiation by the Ablowitz–Ladik soliton,” Phys. Rev. E, 68, 066610 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  41. E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, “Dynamics of the Ablowitz–Ladik soliton train,” Phys. Rev. E, 69, 056607 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation,” Phys. Rev. Lett., 110, 064105 (2013).

    Article  ADS  Google Scholar 

  43. V. S. Gerdjikov and A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation,” J. Math. Phys., 58, 013502 (2017); arXiv:1510.0480v2 [nlin.SI] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. J. Ablowitz and Z. H. Musslimani, “Integrable discrete PT symmetric model,” Phys. Rev. E, 90, 032912 (2014).

    Article  ADS  Google Scholar 

  45. M. J. Ablowitz and Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation,” Nonlinearity, 29, 915–946 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A. Zezyulin, “Solitons in PT-symmetric nonlinear lattices,” Phys. Rev. A, 83, 041805 (2011); arXiv:1104.0276v2 [nlin.PS] (2011).

    Article  ADS  Google Scholar 

  47. I. V. Barashenkov, “Hamiltonian formulation of the standard PT -symmetric nonlinear Schrödinger dimer,” Phys. Rev. A, 90, 045802 (2014).

    Article  ADS  Google Scholar 

  48. A. Fring, “PT -symmetric deformations of integrable models,” Philos. Trans. R. Soc. Lond. Ser. A, 371, 20120046 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. A. A. Zyablovsky, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, and A. A. Lisyansky, “PT -symmetry in optics,” Phys. Usp., 57, 1063–1082 (2014).

    Article  ADS  Google Scholar 

  50. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett., 80, 5243–5246 (1998); C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT -symmetric quantum mechanics,” J. Math. Phys., 40, 2201–2229 (1999); arXiv:quant-ph/9809072v1 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. A. Mostafazadeh, “Pseudo-hermiticity versus PT -symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,” J. Math. Phys., 43, 205–214 (2002); arXiv:math-ph/0107001v3 (2001); “Pseudo-hermiticity versus PT -symmetry: II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum,” J. Math. Phys., 43, 2814–2816 (2002); arXiv:math-ph/0110016v2 (2001); “Pseudo-hermiticity versus PT -Symmetry: III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries,” J. Math. Phys., 43, 3944–3951 (2001); arXiv:math-ph/0203005v2 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Progr. Phys., 70, 947–1018 (2007); arXiv:hep-th/0703096v1 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Mostafazadeh, “Pseudo-Hermiticity and generalized PT -and CPT-symmetries,” J. Math. Phys., 44, 974–989 (2003); arXiv:math-ph/0209018v3 (2002); “Exact PT -symmetry is equivalent to Hermiticity,” J. Phys. A: Math. Gen., 36, 7081–7091 (2003); arXiv:quant-ph/0304080v2 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. V. S. Gerdjikov, G. G. Grahovski, and R. I. Ivanov, “The N-wave equations with PT symmetry,” Theor. Math. Phys., 188, 1305–1321 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  55. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nature Phys., 6, 192–195 (2010).

    Article  ADS  Google Scholar 

  56. V. S. Gerdjikov and G. G. Grahovski, “Multi-component NLS models on symmetric spaces: Spectral properties versus representations theory,” SIGMA, 6, 044 (2010); arXiv:1006.0301v1 [nlin.SI] (2010).

    MathSciNet  MATH  Google Scholar 

  57. V. S. Gerdjikov, G. G. Grahovski, and N. A. Kostov, “Reductions of N-wave interactions related to low-rank simple Lie algebras: I. Z2-reductions,” J. Phys. A: Math. Gen., 34, 9425–9461 (2001); arXiv:nlin.SI/0006001v3 (2000).

    Article  ADS  MATH  Google Scholar 

  58. V. S. Gerdjikov and P. P. Kulish, “The generating operator for the n×n linear system,” Phys. D, 3, 549–564 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  59. E. V. Doktorov and S. B. Leble, A Dressing Method in Mathematical Physics (Math. Phys. Stud., Vol. 20), Springer, Dordrecht (2007).

  60. M. J. Ablowitz, X.-D. Luo, and Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions,” J. Math. Phys., 59, 011501 (2018); arXiv: 1612.02726v1 [nlin.SI] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. M. Li and T. Xu, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential,” Phys. Rev. E, 91, 033202 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  62. M. Li, T. Xu, and D. Meng, “Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model,” J. Phys. Soc. Japan, 85, 124001 (2016); arXiv:1503.02254v2 [nlin.SI] (2015).

    Article  ADS  Google Scholar 

  63. B. Prinari and F. Vitale, “Inverse scattering transform for the focusing Ablowitz–Ladik system with nonzero boundary conditions,” Stud. Appl. Math., 137, 28–52 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. S. Gerdjikov, G. G. Grahovski, and R. I. Ivanov, “On integrable wave interactions and Lax pairs on symmetric spaces,” Wave Motion, 71, 53–70 (2017).

    Article  MathSciNet  Google Scholar 

  65. M. Gürses, “Nonlocal Fordy–Kulish equations on symmetric spaces,” Phys. Lett. A, 381, 1791–1794 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Grahovski.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 197, No. 1, pp. 24–44, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grahovski, G.G., Mohammed, A.J. & Susanto, H. Nonlocal Reductions of the Ablowitz–Ladik Equation. Theor Math Phys 197, 1412–1429 (2018). https://doi.org/10.1134/S0040577918100021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918100021

Keywords

Navigation