Skip to main content
Log in

Regular and Irregular Solutions in the Problem of Dislocations in Solids

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For an initial differential equation with deviations of the spatial variable, we consider asymptotic solutions with respect to the residual. All solutions are naturally divided into classes depending regularly and irregularly on the problem parameters. In different regions in a small neighborhood of the zero equilibrium state of the phase space, we construct special nonlinear distribution equations and systems of equations depending on continuous families of certain parameters. In particular, we show that solutions of the initial spatially one-dimensional equation can be described using solutions of special equations and systems of Schr¨odinger-type equations in a spatially two-dimensional argument range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Kontorova and Ya. J. Frenkel’, “On the theory of plastic deformation and twinning I,” Sov. JETP, 8, 89–97 (1938)

    MATH  Google Scholar 

  2. T. A. Kontorova and Ya. J. Frenkel’,“On the theory of plastic deformation and twinning II,” Sov. JETP, 8, 1340–1348 (1938)

    MATH  Google Scholar 

  3. T. A. Kontorova and Ya. J. Frenkel’,“On the theory of plastic deformation and twinning III,” Sov. JETP, 8, 1349–1358 (1938).

    MATH  Google Scholar 

  4. C. A. Wert and R. M. Thomson, Physics of Solids, McGraw-Hill, New York (1970).

    Google Scholar 

  5. E. Fermi, J. Pasta, and S. Ulam, “Studies of Nonlinear Problems I,” Report LA-1940, Los Alamos Scientific Lab., Univ. of California, Los Alamos, 21 (1955).

  6. T. Genta, A. Giorgilli, S. Paleari, and T. Penati, “Packets of resonant modes in the Fermi–Pasta–Ulam system,” Phys. Lett. A, 376, 2038–2044 (2012).

    Article  ADS  MATH  Google Scholar 

  7. N. A. Kudryashov, Analytic Theory of Nonlinear Differential Equations [in Russian], Institute of Computer Science, Moscow (2004).

    Google Scholar 

  8. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–deVries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  MATH  Google Scholar 

  9. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Stud. Appl. Math., Vol. 4), SIAM, Philadelphia, Pa. (1981).

    Book  Google Scholar 

  10. N. A. Kudryashov, “From the Fermi–Pasta–Ulam model to higher-order nonlinear evolution equations,” Rep. Math. Phys., 77, 57–67 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. D. Glyzin, S. A. Kashchenko, and A. O. Tolbey, “Two wave interactions in a Fermi–Pasta–Ulam model,” Model. Anal. Inform. Sist., 23, 548–558 (2016).

    Article  Google Scholar 

  12. S. A. Kashchenko, “Normal form for the KdV–Burgers equation,” Dokl. Math., 93, 331–333.

  13. S. A. Kaschenko, “Normalization in the systems with small diffusion,” Internat. J. Bifur. Chaos, 6, 1093–1109 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. I. S. Kaschenko and S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type,” Internat. J. Bifur. Chaos, 25, 1550142 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. A. Kashchenko, “Quasinormal forms for parabolic equations with small diffusion,” Soviet Math. Dokl., 37, 510–513 (1988).

    MathSciNet  MATH  Google Scholar 

  16. I. S. Kashchenko and S. A. Kashchenko, “Quasinormal forms of two-component singularly perturbed systems,” Dokl. Math., 86, 865–870 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. A. Kudryashov, Methods of Nonlinear Mathematical Physics [in Russian], Intellekt, Dologoprudny (2010).

    Google Scholar 

  18. N. A. Kudryashov, “Analytical properties of nonlinear dislocation equation,” Appl. Math. Lett., 69, 29–34 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. I. Naumkin, “Solution asymptotics at large times for the non-linear Schrödinger equation,” Izv. Math., 61, 757–794 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. I. Naumkin, “The dissipative property of a cubic non-linear Schrödinger equation,” Izv. Math., 79, 346–374 (2015).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kashchenko.

Additional information

This research was supported by the Russian Federation Ministry of Education and Science in the framework of state assignment No. 1.12873.2018/12.1.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 195, No. 3, pp. 362–380, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, S.A. Regular and Irregular Solutions in the Problem of Dislocations in Solids. Theor Math Phys 195, 807–824 (2018). https://doi.org/10.1134/S0040577918060028

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918060028

Keywords

Navigation