Skip to main content
Log in

Anisotropic Cosmology with a Dilaton Field Coupled to Ghost Dark Energy

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a dilaton scalar field coupled to ghost dark energy in an anisotropic universe. The evolution of dark energy, which dominates the universe, can be completely described by a single dilaton scalar field. This connection allows reconstructing the kinetic energy and also the dynamics of the dilaton scalar field according to the evolution of the energy density. Using the latest observational data, we obtain bounds on the ghost dark energy models and also on generalized dark matter and dark energy. For this, we investigate how the expansion history H(z) is determined by observational quantities. We calculate the evolution of density perturbations in the linear regime for both ghost and generalized ghost dark energy and compare the results with ΛCDM models. We discuss the justification of the generalized second law of thermodynamics in a Bianchi type-I universe. The obtained model is stable for large time intervals but is unstable at small times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. G. Reiss et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” Astrophys. J., 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  3. D. N. Spergel et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl., 148, 175–194 (2003).

    Article  ADS  Google Scholar 

  4. D. N. Spergel et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology,” Astrophys. J. Suppl., 170, 377–408 (2007).

    Article  ADS  Google Scholar 

  5. C. Wetterich, “Cosmology and the fate of dilatation symmetry,” Nucl. Phys. B, 302, 668–696 (1988).

    Article  ADS  Google Scholar 

  6. B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Phys. Rev. D, 37, 3406–3427 (1988).

    Article  ADS  Google Scholar 

  7. C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration,” Phys. Rev. Lett., 85, 4438–4441 (2000).

    Article  ADS  Google Scholar 

  8. C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “Essentials of k-essence,” Phys. Rev. D, 63, 103510 (2001).

    Article  ADS  Google Scholar 

  9. T. Padmanabhan, “Accelerated expansion of the universe driven by tachyonic matter,” Phys. Rev. D, 66, 021301 (2002).

    Article  ADS  Google Scholar 

  10. A. Sen, “Tachyon matter,” JHEP, 0207, 065 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  11. R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state,” Phys. Lett. B, 545, 23–29 (2002).

    Article  ADS  Google Scholar 

  12. S. Nojiri and S. D. Odintsov, “Quantum de Sitter cosmology and phantom matter,” Phys. Lett. B, 562, 147–152 (2003).

    Article  ADS  MATH  Google Scholar 

  13. S. Nojiri and S. D. Odintsov, “de Sitter brane universe induced by phantom and quantum effects,” Phys. Lett. B, 565, 1–9 (2003).

    Article  ADS  MATH  Google Scholar 

  14. N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, “Ghost condensation and a consistent infrared modification of gravity,” JHEP, 0405, 074 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Piazza and S. Tsujikawa, “Dilatonic ghost condensate as dark energy,” J. Cosmol. Astropart. Phys., 07, 004 (2004).

    Article  ADS  Google Scholar 

  16. E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology in a (phantom) scalar–tensor theory: Dark energy and the cosmic speed-up,” Phys. Rev. D, 70, 043539 (2004).

    Article  ADS  Google Scholar 

  17. S. Nojiri, S. D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D, 71, 063004 (2005).

    Article  ADS  Google Scholar 

  18. A. Anisimov, E. Babichev, and A. Vikman, “B-inflation,” J. Cosmol. Astropart. Phys., 06, 006 (2005).

    Article  ADS  Google Scholar 

  19. E. Witten, “The cosmological constant from the viewpoint of string theory,” in: Sources and Detection of Dark Matter and Dark Energy in the Universe (Marina del Rey, Calif, USA, 23–25 February 2000, D. B. Cline, ed.), Springer, Berlin (2001), pp. 27–36.

    Chapter  Google Scholar 

  20. R.-G. Cai, “A dark energy model characterized by the age of the Universe,” Phys. Lett. B, 657, 228–231 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H. Wei and R.-G. Cai, “A new model of agegraphic dark energy,” Phys. Lett. B, 660, 113–117 (2008).

    Article  ADS  Google Scholar 

  22. E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Internat. J. Modern Phys. D, 15, 1753–1935 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Li, X.-D. Li, S. Wang, and Y. Wang, “Dark energy,” Commun. Theor. Phys., 56, 525–604 (2011).

    Article  ADS  MATH  Google Scholar 

  24. A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Relativ., 13, 3–161 (2010).

    Article  ADS  MATH  Google Scholar 

  25. S. Capozziello and M. de Laurentis, “Extended theories of gravity,” Phys. Rep., 509, 167–320 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified gravity and cosmology,” Phys. Rep., 513, 1–189 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models,” Phys. Rep., 505, 59–114 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Dvali, G. Gabadadze, and M. Porrati, “4D gravity on a brane in 5D Minkowski space,” Phys. Lett. B, 485, 208–214 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. S. Carena, J. Lykken, M. Park, and J. Santiago, “Self-acclerating warped braneworlds,” Phys. Rev. D, 75, 026009 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Minamitsuji, “Self-accelerating solutions in the cascading DGP braneworld,” Phys. Lett. B, 684, 92–95 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Sheykhi, B. Wang, and N. Riazi, “String inspired explanation for the superacceleration of our Universe,” Phys. Rev. D, 75, 123513 (2007).

    Article  ADS  Google Scholar 

  32. F. R. Urban and A. R. Zhitnitsky, “Cosmological constant from the ghost: A toy model,” Phys. Rev. D, 80, 063001 (2009).

    Article  ADS  Google Scholar 

  33. N. Ohta, “Dark energy and QCD ghost,” Phys. Lett. B, 695, 41–44 (2011).

    Article  ADS  Google Scholar 

  34. F. R. Urban and A. R. Zhitnitsky, “Cosmological constant, violation of cosmological isotropy, and CMB,” J. Cosmol. Astropart. Phys., 09, 018 (2009).

    Article  ADS  Google Scholar 

  35. E. Witten, “Current algebra theorems for the U(1) ‘Goldstone boson’,” Nucl. Phys. B, 156, 269–283 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  36. F. R. Urban and A. R. Zhitnitsky, “The cosmological constant from the QCD Veneziano ghost,” Phys. Lett. B, 688, 9–12 (2010).

    Article  ADS  Google Scholar 

  37. G. Veneziano, “U(1) without instantons,” Nucl. Phys. B, 159, 123–224 (1979).

    Article  MathSciNet  Google Scholar 

  38. F. R. Urban and A. R. Zhitnitsky, “The QCD nature of dark energy,” Nucl. Phys. B, 835, 135–173 (2010).

    Article  ADS  MATH  Google Scholar 

  39. A. R. Zhitnitsky, “Contact term, its holographic description in QCD, and dark energy,” Phys. Rev. D, 86, 045026 (2012).

    Article  ADS  Google Scholar 

  40. M. Maggiore, “Zero-point quantum fluctuations and dark energy,” Phys. Rev. D, 83, 063514 (2011).

    Article  ADS  Google Scholar 

  41. E. Ebrahimi and A. Sheykhi, “Instability of QCD ghost dark energy model,” Internat. J. Modern Phys. D, 20, 2369–2381 (2011).

    Article  ADS  MATH  Google Scholar 

  42. A. Sheykhi, “Holographic scalar field models of dark energy,” Phys. Rev. D, 84, 107302 (2011).

    Article  ADS  Google Scholar 

  43. A. Sheykhi, “Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff,” Class. Q. Grav., 27, 025007 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. Mazumder and S. Chakraborty, “Validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in holographic dark energy model,” Gen. Rel. Grav., 42, 813–820 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. M. Sharif and M. Zubair, “Thermodynamics in f(R, T) theory of gravity,” J. Cosmol. Astropart. Phys., 3, 028 (2012); Erratum, 5, E01 (2012); arXiv:1204.0848v2 [gr-qc] (2012); “Thermodynamic behavior of particular f(R, T)-gravity models,” JETP, 117, 248–257 (2013).

    Google Scholar 

  46. K. Karami and A. Abdolmaleki, “Generalized second law of thermodynamics in f(T) gravity,” J. Cosmol. Astropart. Phys., 04, 007 (2012); arXiv:1201.2511v2 [gr-qc] (2012).

    Google Scholar 

  47. H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Górski, and P. B. Lilje, “Asymmetries in the cosmic microwave background anisotropy field,” Astrophys. J., 605, 14–20 (2004).

    Article  ADS  Google Scholar 

  48. T. R. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Górski, and F. K. Hansen, “Fast and efficient template fitting of deterministic anisotropic cosmological models applied to WMAP data,” Astrophys. J., 643, 616–629 (2006).

    Article  ADS  Google Scholar 

  49. L. Campanelli, P. Cea, and L. Tedesco, “Ellipsoidal universe can solve the cosmic microwave background quadrupole problem,” Phys. Rev. Lett., 97, 131302 (2006); Erratum, 97, 209903 (2006).

    Article  ADS  Google Scholar 

  50. B. Saha, “Anisotropic cosmological models with perfect fluid and dark energy,” Chinese J. Phys., 43, 1035–1043 (2005); arXiv:gr-qc/0412078v1 (2004).

    ADS  Google Scholar 

  51. K. S. Adhav, “Binary mixture of anisotropic dark energy and perfect fluid in Kantowski–Sach universe,” Eur. Phys. J. Plus, 126, 103 (2011).

    Article  Google Scholar 

  52. G. P. Singh, Binaya K. Bishi, and P. K. Sahoo, “Bianchi type-I bulk viscous cosmology with Chaplygin gas in Lyra geometry,” Chinese J. Phys., 54, 895–905 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  53. Shri Ram, S. Chandel, and M. K. Verma, “Kantowski–Sachs universe with anisotropic dark energy in Lyra geometry,” Chinese J. Phys., 54, 953–959 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  54. H. Hossienkhani, “Bianchi type I universe and interacting ghost scalar fields models of dark energy,” Astrophys. Space Sci., 361, 136 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  55. G. P. Singh, Binaya K. Bishi, and P. K. Sahoo, “Scalar field and time varying cosmological constant in f(R, T) gravity for Bianchi type-I universe,” Chinese J. Phys., 54, 244–255 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  56. S. D. Katore, A. Y. Shaikh, and A. S. Bhaskar, “Anisotropic dark energy cosmological models from early deceleration to late time acceleration in Lyra geometry,” Bulg. J. Phys., 41, 34–59 (2014).

    Google Scholar 

  57. S. D. Katore and S. P. Hatkar, “Kaluza Klein universe with magnetized anisotropic dark energy in general relativity and Lyra manifold,” New Astronomy, 34, 172–177 (2015).

    Article  ADS  Google Scholar 

  58. A. Pradhan and A. K. Vishwakarma, “A new class of LRS Bianchi type-I cosmological models in Lyra geometry,” J. Geom. Phys., 49, 332–342 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  59. F. Rahaman, N. Begum, G. Bag, and B. C. Bhui, “Cosmological models with negative constant deceleration parameter in Lyra geometry,” Astrophys. Space Sci., 299, 211–218 (2005).

    Article  ADS  Google Scholar 

  60. N. Azimi and F. Barati, “Instability of interacting ghost dark energy model in an anisotropic universe,” Internat. J. Theor. Phys., 55, 3318–3328 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. F. Barati, “Interacting generalized ghost dark energy in non-isotropic background,” Internat. J. Theor. Phys., 55, 2189–2198 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Gasperini, F. Piazza, and G. Veneziano, “Quintessence as a runaway dilaton,” Phys. Rev. D, 65, 023508 (2002).

    Article  ADS  Google Scholar 

  63. M. Gasperini and R. Ricci, “Homogeneous conformal string backgrounds,” Class. Q. Grav., 12, 677–699 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  64. M. Gasperini, “Dilatonic interpretation of quintessence?,” Phys. Rev. D, 64, 043510 (2001).

    Article  ADS  Google Scholar 

  65. R. H. Brandenberger, R. Easther, and J. Maia, “Nonsingular dilaton cosmology,” JHEP, 9808, 007 (1998).

    Article  ADS  Google Scholar 

  66. C. Armendáriz-Picón, T. Damour, and V. Mukhanov, “k-Inflation,” Phys. Lett. B, 458, 209–218 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M. Zaldarriaga, “Ghost inflation,” J. Cosmol. Astropart. Phys., 04, 001 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  68. O. Bartolami, F. Gil Pedro, and M. Le Delliou, “Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586,” Phys. Lett. B, 654, 165 (2007).

    Article  ADS  Google Scholar 

  69. B. Wang, Y. Gong, and E. Abdalla, “Transition of the dark energy equation of state in an interacting holographic dark energy model,” Phys. Lett. B, 624, 141–146 (2005).

    Article  ADS  Google Scholar 

  70. A. A. Sen and D. Pavón, “Reconstructing the interaction rate in holographic models of dark energy,” Phys. Lett. B, 664, 7–11 (2008).

    Article  ADS  Google Scholar 

  71. P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Rev. Modern Phys., 75, 559–606 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D, 7, 2333–2346 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. E. N. Saridakis, P. F. González-Díaz, and C. L. Sigüenza, “Unified dark energy thermodynamics: Varying w and the −1-crossing,” Class. Q. Grav., 26, 165003 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. M. Jamil, E. N. Saridakis, and M. R. Setare, “Thermodynamics of dark energy interacting with dark matter and radiation,” Phys. Rev. D, 81, 023007 (2010).

    Article  ADS  Google Scholar 

  75. H. Wei, “Entropy-corrected holographic dark energy,” Commun. Theor. Phys., 52, 743–749 (2009).

    Article  ADS  MATH  Google Scholar 

  76. S. H. Pereira and J. F. Jesus, “Can dark matter decay in dark energy?,” Phys. Rev. D, 79, 043517 (2009).

    Article  ADS  Google Scholar 

  77. R.-G. Cai, Z.-L. Tuo, Y.-B. Wu, and Y.-Y. Zhao, “More on QCD ghost dark energy,” Phys. Rev. D, 86, 023511 (2012).

    Article  ADS  Google Scholar 

  78. A. Sheykhi and M. Sadegh Movahed, “Interacting ghost dark energy in non-flat universe,” Gen. Rel. Grav., 44, 449–465 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J., 573, 37–42 (2002).

    Article  ADS  Google Scholar 

  80. T. M. Davis et al., “Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes,” Astrophys. J., 666, 716–725 (2007).

    Article  ADS  Google Scholar 

  81. E. Komatsu et al., “Five-year Wilkinson Microwave Anisotropy Probe observations: Cosmological interpretation,” Astrophys. J. Suppl., 180, 330–376 (2009).

    Article  ADS  Google Scholar 

  82. P. A. R. Ade et al. [Planck Collab.], “Planck 2013 results: XVI. Cosmological parameters,” Astron. Astrophys., 571, A16 (2014); arXiv:1303.5076v3 [astro-ph.CO] (2013).

    Google Scholar 

  83. W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope, and A. S. Szalay, “Measuring the baryon acoustic oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey,” Monthly Notices Roy. Astron. Soc., 381, 1053–1066 (2007).

    Article  ADS  Google Scholar 

  84. A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R. Chornock, and D. Sarkar, “A redetermination of the Hubble constant with the Hubble Space Telescope from a differential distance ladder,” Astrophys. J., 699, 539–563 (2009).

    Article  ADS  Google Scholar 

  85. Y.-S. Song and W. J. Percival, “Reconstructing the history of structure formation using redshift distortions,” J. Cosmol. Astropart. Phys., 10, 004 (2009).

    Article  ADS  Google Scholar 

  86. A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, “A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3,” Astrophys. J., 730, 119 (2011).

    Article  ADS  Google Scholar 

  87. G. Chen, J. R. Gott III, and B. Ratra, “Non-Gaussian error distribution of Hubble constant measurements,” Publ. Astron. Soc. Pac., 115, 1269–1279 (2003); arXiv:astro-ph/0308099v1 (2003).

    Article  ADS  Google Scholar 

  88. J. R. Gott III, M. S. Vogeley, S. Podariu, and B. Ratra, “Median statistics, H0, and the accelerating universe,” Astrophys. J., 549, 1–17 (2001).

    Article  ADS  Google Scholar 

  89. M. Li, X.-D. Li, S. Wang, and X. Zhang, “Holographic dark energy models: A comparison from the latest observational data,” J. Cosmol. Astropart. Phys., 06, 036 (2009).

    Article  ADS  Google Scholar 

  90. J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D, 71, 123001 (2005).

    Article  ADS  Google Scholar 

  91. C. Blake et al., “The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1,” Monthly Notices Roy. Astron. Soc., 425, 405–414 (2012).

    Article  ADS  Google Scholar 

  92. Y.-L. Li, S.-Y. Li, T.-J. Zhang, and T.-P. Li, “Model-independent determination of curvature parameter using H(z) and DA(z) data pairs from BAO measurements,” Astrophys. J. Lett., 789, L15 (2014).

    Article  ADS  Google Scholar 

  93. P. K. Aluri, S. Panda, M. Sharma, and S. Thakur, “Anisotropic universe with anisotropic sources,” J. Cosmol. Astropart. Phys., 12, 003 (2013).

    Article  ADS  Google Scholar 

  94. F. Pace, J. C. Waizmann, and M. Bartelmann, “Spherical collapse model in dark-energy cosmologies,” Monthly Notices Roy. Astron. Soc., 406, 1865–1874 (2010).

    ADS  Google Scholar 

  95. F. Pace, L. Moscardini, R. Crittenden, M. Bartelmann, and V. Pettorino, “A comparison of structure formation in minimally and non-minimally coupled quintessence models,” Monthly Notices Roy. Astron. Soc., 437, 547–561 (2014).

    Article  ADS  Google Scholar 

  96. W. J. Percival, “Cosmological structure formation in a homogeneous dark energy background,” Astron. Astrophys., 443, 819–830 (2005).

    Article  ADS  Google Scholar 

  97. O. Bertolami, R. Lehnert, R. Pottin, and A. Ribeiro, “Cosmological acceleration, varying couplings, and Lorentz breaking,” Phys. Rev. D, 69, 083513 (2004).

    Article  ADS  Google Scholar 

  98. I. Ya. Aref’eva, N. V. Bulatov, and S. Yu. Vernov, “Stable exact solutions in cosmological models with two scalar fields,” Theor. Math. Phys., 163, 788–803 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  99. I. Ya. Aref’eva, N. V. Bulatov, L. V. Joukovskaya, and S. Yu. Vernov, “Null energy condition violation and classical stability in the Bianchi I metric,” Phys. Rev. D, 80, 083532 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  100. I. Ya. Aref’eva, A. S. Koshelev, and S. Yu. Vernov, “Crossing the w= − 1 barrier in the D3-brane dark energy model,” Phys. Rev. D, 72, 064017 (2005).

    Article  ADS  Google Scholar 

  101. P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field,” Phys. Rev. D, 58, 023503 (1998)

    Article  ADS  Google Scholar 

  102. E. J. Copeland, A. R. Liddle, and D. Wands, “Exponential potentials and cosmological scaling solutions,” Phys. Rev. D, 57, 4686–4690 (1998).

    Article  ADS  Google Scholar 

  103. M. R. Setare and E. C. Vagenas, “The cosmological dynamics of interacting holographic dark energy model,” Internat. J. Modern Phys. D, 18, 147–157 (2009).

    Article  ADS  MATH  Google Scholar 

  104. D. Iakubovskyi and Y. Shtanov, “Braneworld cosmological solutions and their stability,” Class. Q. Grav., 22, 2415–2432 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. Y. S. Myung, “Instability of holographic dark energy models,” Phys. Lett. B, 652, 223–227 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. K. Y. Kim, H. W. Lee, and Y. S. Myung, “Instability of agegraphic dark energy models,” Phys. Lett. B, 660, 118–124 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hossienkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossienkhani, H., Fayaz, V., Terohid, S.A.A. et al. Anisotropic Cosmology with a Dilaton Field Coupled to Ghost Dark Energy. Theor Math Phys 194, 415–438 (2018). https://doi.org/10.1134/S0040577918030091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918030091

Keywords

Navigation