Advertisement

Theoretical and Mathematical Physics

, Volume 194, Issue 3, pp 384–389 | Cite as

Critical Point in the Problem of Maximizing the Transition Probability Using Measurements in an n-Level Quantum System

  • N. B. Il’in
  • A. N. Pechen
Article
  • 23 Downloads

Abstract

We consider the problem of maximizing the transition probability in an n-level quantum system from a given initial state to a given final state using nonselective quantum measurements. We find a sequence of measurements that is a critical point of the transition probability and, moreover, a local maximum in each variable on the set of one-dimensional projectors. We consider the class of one-dimensional projectors because these projectors describe the measurements of populations of pure states of the system.

Keywords

multilevel quantum system open quantum system quantum measurement quantum system control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics, Wiley, New York (2000).Google Scholar
  2. 2.
    M. Shapiro and P. W. Brumer, Principles of the Quantum Control of Molecular Processes, Wiley, Hoboken, N. J. (2003).zbMATHGoogle Scholar
  3. 3.
    D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective, University Science Books, Sausalito, Calif. (2007).Google Scholar
  4. 4.
    D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall, Boca Raton, Fla. (2008).zbMATHGoogle Scholar
  5. 5.
    V. S. Letokhov, Laser Control of Atoms and Molecules, Oxford Univ. Press, New York (2007).Google Scholar
  6. 6.
    C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena,” Adv. Chem. Phys., 148, 1–76 (2012).Google Scholar
  7. 7.
    S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, “Training Schrödinger’s cat: Quantum optimal control,” Eur. Phys. J. D, 69, 279 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of Λ-atoms through the stochastic limit,” in: Quantum Information and Computing (QP–PQ: Quantum Probability and White Noise Analysis, Vol. 19, L. Accardi, M. Ohya, and N. Watanabe, eds.), World Scientific, Singapore (2006), pp. 1–17.zbMATHGoogle Scholar
  9. 9.
    A. I. Zenchuk and S. I. Doronin, “Remote control of quantum correlations in a two-qubit receiver by a three-qubit sender,” Theor. Math. Phys., 188, 1259–1271 (2016).CrossRefzbMATHGoogle Scholar
  10. 10.
    K. A. Lyakhov, H. J. Lee, and A. N. Pechen, “Some features of boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator,” IEEE J. Quantum Electron., 52, 1400208 (2016).CrossRefGoogle Scholar
  11. 11.
    S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, and I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20, 1750021 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. S. Holevo, Statistical Structure of Quantum Theory (Lect. Notes Phys. Monogr., Vol. 67), Springer, Berlin (2001).Google Scholar
  13. 13.
    M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-Systems, Springer, Dordrecht (2011).CrossRefzbMATHGoogle Scholar
  14. 14.
    I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst. Math., 294, 241–251 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Trushechkin, “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions,” J. Math. Phys., 58, 062102 (2017); arXiv:1607.07572v1 [quant-ph] (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. N. Pechen, N. B. Ilin, F. Shuang, and H. Rabitz, “Quantum control by von Neumann measurements,” Phys. Rev. A, 74, 052102 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    H. W. Wiseman, “Quantum control: Squinting at quantum systems,” Nature, 470, 178–179 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    J. Gough, V. P. Belavkin, and O. G. Smolyanov, “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control,” J. Opt. B: Quantum Semiclass. Opt., 7, S237–S244 (2005).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Vilela Mendes and V. I. Man’ko, “Quantum control and the Strocchi map,” Phys. Rev. A, 67, 053404 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys., 18, 756–763 (1977).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. P. Balachandran and S. M. Roy, “Quantum anti-Zeno paradox,” Phys. Rev. Lett., 84, 4019–4022 (2000).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    F. Shuang, A. N. Pechen, T. S. Ho, and H. Rabitz, “Observation-assisted optimal control of quantum dynamics,” J. Chem. Phys., 126, 134303 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    M. S. Blok, C. Bonato, M. L. Markham, D. J. Twitchen, V. V. Dobrovitski, and R. Hanson, “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback,” Nature Phys., 10, 189–193 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar, “Zeno effect for quantum computation and control,” Phys. Rev. Lett., 108, 080501 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    A. N. Pechen and A. S. Trushechkin, “Measurement-assisted Landau–Zener transitions,” Phys. Rev. A, 91, 052316 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    M. G. Ivanov, “On uniqueness of the quantum measurement theory for exact measurements with discrete spectra [in Russian],” Tr. MFTI, 8, No. 1(29), 170–178 (2016).Google Scholar
  27. 27.
    M. B. Menskii, “Evolution of a quantum system subject to continuous measurement,” Theor. Math. Phys., 75, 357–365 (1988).MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Campisi, P. Talkner, and P. Hanngi, “Influence of measurements on the statistics of work performed on a quantum system,” Phys. Rev. E, 83, 041114 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    A. Hentschel and B. C. Sanders, “Machine learning for precise quantum measurement,” Phys. Rev. Lett., 104, 063603 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    H. Rabitz, H. Hsieh, and C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science, 303, 1998–2001 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    T. S. Ho and H. Rabitz, “Why do effective quantum controls appear easy to find?” J. Photochem. Photobiol. A, 180, 226–240 (2006).CrossRefGoogle Scholar
  32. 32.
    P. de Fouquieres and S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16, 1350021 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    N. Rach, M. M. Müller, T. Calarco, and S. Montangero, “Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape,” Phys. Rev. A, 92, 062343 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    A. N. Pechen and N. B. Il’in, “On critical points of the objective functional for maximization of qubit observables,” Russ. Math. Surveys, 70, 782–784 (2015).ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    A. N. Pechen, “On the speed gradient method for generating unitary quantum operations for closed quantum systems,” Russ. Math. Surveys, 71, 597–599 (2016).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    A. N. Pechen and N. B. Il’in, “Control landscape for ultrafast manipulation by a qubit,” J. Phys. A: Math. Theor., 50, 075301 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    A. N. Pechen and N. B. Il’in, “On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements,” Proc. Steklov Inst. Math., 294, 233–240 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.MISIS National University of Science and TechnologyMoscowRussia

Personalised recommendations