Advertisement

Theoretical and Mathematical Physics

, Volume 194, Issue 3, pp 377–383 | Cite as

Zone Structure of the Renormalization Group Flow in a Fermionic Hierarchical Model

  • M. D. Missarov
  • A. F. Shamsutdinov
Article
  • 18 Downloads

Abstract

The Gaussian part of the Hamiltonian of the four-component fermion model on a hierarchical lattice is invariant under the block-spin transformation of the renormalization group with a given degree of normalization (the renormalization group parameter). We describe the renormalization group transformation in the space of coefficients defining the Grassmann-valued density of a free measure as a homogeneous quadratic map. We interpret this space as a two-dimensional projective space and visualize it as a disk. If the renormalization group parameter is greater than the lattice dimension, then the unique attractive fixed point of the renormalization group is given by the density of the Grassmann delta function. This fixed point has two different (left and right) invariant neighborhoods. Based on this, we classify the points of the projective plane according to how they tend to the attracting point (on the left or right) under iterations of the map. We discuss the zone structure of the obtained regions and show that the global flow of the renormalization group is described simply in terms of this zone structure.

Keywords

renormalization group fermion model projective space zone structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yu. Lerner and M. D. Missarov, “Fixed points of renormalization group for the hierarchical fermionic model,” J. Statist. Phys., 76, 805–817 (1994).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. D. Missarov, “RG-invariant curves in the fermionic hierarchical model,” Theor. Math. Phys., 114, 255–265 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. D. Missarov, “Critical phenomena in the fermionic hierarchical model,” Theor. Math. Phys., 117, 1483–1498 (1998).CrossRefzbMATHGoogle Scholar
  4. 4.
    M. D. Missarov, “Dynamical phenomena in the hierarchical fermionic model,” Phys. Lett. A, 253, 41–46 (1999).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    M. D. Missarov, “Renormalization group solution of fermionic Dyson model,” in: Asymptotic Combinatorics with Application to Mathematical Physics (NATO Sci. Ser. II: Math. Phys. Chem., Vol. 77, V. A. Malyshev and A. M. Vershik, eds.), Kluwer, Dordrecht (2002), pp. 151–166.MathSciNetzbMATHGoogle Scholar
  6. 6.
    M. D. Missarov, “Continuum limit in the fermionic hierarchical model,” Theor. Math. Phys., 118, 32–40 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    P. M. Bleher and Ja. G. Sinai, “Investigation of the critical point in models of the type of Dyson’s hierarchical models,” Commun. Math. Phys., 33, 23–42 (1973).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ya. G. Sinai, Theory of Phase Transitions [in Russian], Nauka, Moscow (1980); English transl.: Theory of Phase Transitions: Rigorous Results (Intl. Ser. Nat. Phil., Vol. 108, Pergamon, Oxford (1982).Google Scholar
  9. 9.
    P. Collet and J.-P. Eckmann, A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics (Lect. Notes Phys., Vol. 74), Springer, Berlin (1978).Google Scholar
  10. 10.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Fizmatlit, Moscow (1994); English transl. (Ser. Sov. East Eur. Math., Vol. 1, World Scientific, Singapore (1994).Google Scholar
  11. 11.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. D. Missarov, “Renormalization group in a fermionic hierarchical model in projective coordinates,” Theor. Math. Phys., 173, 1637–1643 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. D. Missarov and A. F. Shamsutdinov, “An algorithm for studying the renormalization group dynamics in the projective space,” Proc. Steklov Inst. Math., 285, 211–221 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. D. Missarov, “p-Adic renormalization group solutions and the Euclidean renormalization group conjectures,” p-Adic Numbers Ultrametric Anal. Appl., 4, 109–114 (2012).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations