Theoretical and Mathematical Physics

, Volume 194, Issue 3, pp 360–376 | Cite as

Darboux Transformation for a Semidiscrete Short-Pulse Equation

Article
  • 9 Downloads

Abstract

We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for N-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.

Keywords

discrete integrable system soliton Darboux transformation quasideterminant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Grammaticos, T. Tamizhmani, and Y. Kosmann-Schwarzbach, eds., Discrete Integrable Systems (Lect. Notes Phys., Vol. 644), Springer, Berlin (2004).Google Scholar
  2. 2.
    Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach (Progr. Math., Vol. 219), Birkh äuser, Basel (2003).Google Scholar
  3. 3.
    M. J. Ablowitz and J. F. Ladik, “Nonlinear differential–difference equations and Fourier analysis,” J. Math. Phys., 17, 1011–1018 (1976).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. J. Ablowitz and J. F. Ladik, “A nonlinear difference scheme and inverse scattering,” Stud. Appl. Math., 55, 213–229 (1976).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R. Hirota, “Nonlinear partial difference equations: I. A difference analogue of the Korteweg–de Vries equation,” J. Phys. Soc. Japan, 43, 1424–1433 (1977).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R. Hirota, “Nonlinear partial difference equations: II. Discrete-time Toda equation,” J. Phys. Soc. Japan, 43, 2074–2078 (1977).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    B. F. Feng, K. Maruno, and Y. Ohta, “Integrable discretizations of the short pulse equation,” J. Phys. A: Math. Theor., 43, 085203 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    B.-F. Feng, K. Maruno, and Y. Ohta, “Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs,” Pac. J. Math. Ind., 6, 8 (2014).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    T. Schäfer and C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media,” Phys. D, 196, 90–105 (2004).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Y. Chung, C. K. T. Jones, T. Schäfer, and C. E. Wayne, “Ultra-short pulses in linear and nonlinear media,” Nonlinearity, 18, 1351–1374 (2005).ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Sakovich and S. Sakovich, “The short pulse equation is integrable,” J. Phys. Soc. Japan, 74, 239–241 (2005).ADSCrossRefMATHGoogle Scholar
  12. 12.
    A. Sakovich and S. Sakovich, “Solitary wave solutions of the short pulse equation,” J. Phys. A: Math. Gen., 39, L361–L367 (2006).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    B.-F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno, and Y. Ohta, “Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves,” J. Phys. A: Math. Theor., 44, 395201 (2011).CrossRefMATHGoogle Scholar
  14. 14.
    V. K. Kuetche, T. B. Bouetou, and T. C. Kofane, “On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota’s method and Hodnett–Moloney approach,” J. Phys. Soc. Japan, 76, 024004 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Matsuno, “Multiloop soliton and multibreather solutions of the short pulse model equation,” J. Phys. Soc. Japan, 76, 084003 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    U. Saleem and M. Hassan, “Darboux transformation and multisoliton solutions of the short pulse equation,” J. Phys. Soc. Japan, 81, 094008 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    L. Ling, B.-F. Feng, and Z. Zhu, “Multi-soliton, multi-breather, and higher order rogue wave solutions to the complex short pulse equation,” Phys. D, 327, 13–29 (2016).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    H. Wajahat A. Riaz and M. ul Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system,” Commun. Nonlinear Sci. Numer. Simul., 48, 387–397 (2017).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991).CrossRefMATHGoogle Scholar
  20. 20.
    M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system,” J. Phys. A: Math. Theor., 42, 065203 (2009).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    I. M. Gel’fand and V. S. Retakh, “Determinants of matrices over noncommutative rings,” Funct. Anal. Appl., 25, No. 2, 91–102 (1991).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    I. M. Gelfand, S. Gelfand, V. M. Retakh, and R. L. Wilson, “Quasideterminants,” Adv. Math., 193, 56–141 (2005).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    C. X. Li and J. J. C. Nimmo, “Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation,” Proc. Roy. Soc. London Ser. A, 464, 951–966 (2008); arXiv:0711.2594v2 [nlin.SI] (2007).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations