Skip to main content
Log in

Four competing interactions for models with an uncountable set of spin values on a Cayley tree

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider models with four competing interactions (external field, nearest neighbor, second neighbor, and three neighbors) and an uncountable set [0, 1] of spin values on the Cayley tree of order two. We reduce the problem of describing the splitting Gibbs measures of the model to the problem of analyzing solutions of a nonlinear integral equation and study some particular cases for Ising and Potts models. We also show that periodic Gibbs measures for the given models either are translation invariant or have the period two. We present examples where periodic Gibbs measures with the period two are not unique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Pirogov and Ya. G. Sinai, “Phase diagrams of classical lattice systems,” Theor. Math. Phys., 25, 1185–1192 (1975).

    Article  MathSciNet  Google Scholar 

  2. S. A. Pirogov and Ya. G. Sinai, “Phase diagrams of classical lattice systems continuation,” Theor. Math. Phys., 26, 39–49 (1976).

    Article  MathSciNet  Google Scholar 

  3. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results [in Russian], Nauka, Moscow (1980); English transl., Pergamon, Oxford (1982).

    Google Scholar 

  4. R. Kotecky and S. B. Shlosman, “First-order phase transition in large entropy lattice models,” Commun. Math. Phys., 83, 493–515 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Mazel, Y. Suhov, and I. Stuhl, “A classical WR model with q particle types,” J. Stat. Phys., 159, 1040–1086 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Mazel, Y. Suhov, I. Stuhl, and S. Zohren, “Dominance of most tolerant species in multi-type lattice Widom–Rowlinson models,” J. Stat. Mech., 8, P08010 (2014).

    Article  MathSciNet  Google Scholar 

  7. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad, Press, London (1982).

    MATH  Google Scholar 

  8. P. M. Bleher and N. N. Ganikhodjaev, “On pure phases of the Ising model on the Bethe lattice,” Theor. Probab. Appl., 35, 216–227 (1990).

    Article  MathSciNet  Google Scholar 

  9. P. M. Bleher, J. Ruiz, and V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice,” J. Stat. Phys., 79, 473–482 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. N. N. Ganikhodjaev and U. A. Rozikov, “On Ising model with four competing interactions on Cayley tree,” Math. Phys. Anal. Geom., 12, 141–156 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Preston, Gibbs States on Countable Sets, Cambridge Univ. Press, Cambridge (1974).

    Book  MATH  Google Scholar 

  12. U. A. Rozikov, “Structures of partition of the group representation of the Cayley tree into adjacent classes by finite index normal subgroups and their application for discription of periodic Gibbs distributions,” Theor. Math. Phys., 112, 929–933 (1997).

    Article  MATH  Google Scholar 

  13. F. Spitzer, “Markov random fields on an infinite tree,” Ann. Probab., 3, 387–398 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. M. Suhov and U. A. Rozikov, “A hard-core model on a Cayley tree: An example of a loss network,” Queueing Syst., 46, 197–212 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Zachary, “Countable state space Markov random fields and Markov chains on trees,” Ann. Probab., 11, 894–903 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. N. Ganikhodjaev, C. H. Pah, and M. R. B. Wahiddin, “Exact solution of an Ising model with completing interections on a Cayley tree,” J. Phys. A.: Math. Gen., 36, 4283–4289 (2003).

    Article  ADS  MATH  Google Scholar 

  17. J. L. Monroe, “Phase diagrams of Ising models on Husime trees: II. Pair and multisite interaction systems,” J. Stat. Phys., 67, 1185–2000 (1992).

    Article  ADS  MATH  Google Scholar 

  18. J. L. Monroe, “A new criterion for the location of phase transitions for spin system on a recursive lattice,” Phys. Lett. A, 188, 80–84 (1994).

    Article  ADS  MATH  Google Scholar 

  19. N. N. Ganikhodzhaev, “Exact solution of the Ising model on the Cayley tree with competing ternary and binary interactions,” Theor. Math. Phys., 130, 419–424 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. M. Mukhamedov and U. A. Rozikov, “On Gibbs measures of models with completing ternary and binary interactions and corresponding von Neumann algebras,” J. Stat. Phys., 114, 825–848 (2004).

    Article  ADS  MATH  Google Scholar 

  21. N. N. Ganikhodjaev, C. H. Pah, and M. R. B. Wahiddin, “An Ising model with three competing interactions on a Cayley tree,” J. Math. Phys., 45, 3645–3658 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. N. N. Ganikhodjaev and U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree,” Lett. Math. Phys., 75, 99–109 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Yu. R. Dashjan and Yu. M. Suhov, “On the question of the Gibbs description of random processes with discrete time,” Sov. Math. Dokl., 19, 1122–1126 (1978).

    Google Scholar 

  24. Yu. Kh. Eshkabilov, F. H. Haydarov, and U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree,” Math. Phys. Anal. Geom., 16, 1–17 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu. Kh. Eshkabilov, F. H. Haydarov, and U. A. Rozikov, “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree,” J. Stat. Phys., 147, 779–794 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yu. Kh. Eshkabilov, Sh. D. Nodirov, and F. H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures,” Positivity, 20, 929–943 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu. Kh. Eshkabilov and F. H. Haydarov, “On positive solutions of the homogenous Hammerstein integral equation,” Nanosyst.: Phys. Chem. Math., 6, 618–627 (2015).

    Google Scholar 

  28. B. Jahnel, C. Külske, and G. I. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree,” Math. Phys. Anal. Geom., 17, 323–331 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  29. U. A. Rozikov and Yu. Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations,” Math. Phys. Anal. Geom., 13, 275–286 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. U. A. Rozikov and F. H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18, 1550006 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. U. A. Rozikov, Gibbs measures on a Cayley trees, World Scientific, Singapore (2013).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Rozikov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 3, pp. 503–517, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozikov, U.A., Haydarov, F.H. Four competing interactions for models with an uncountable set of spin values on a Cayley tree. Theor Math Phys 191, 910–923 (2017). https://doi.org/10.1134/S0040577917060095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917060095

Keywords

Navigation