Theoretical and Mathematical Physics

, Volume 191, Issue 3, pp 842–855 | Cite as

Renormalization group study of the melting of a two-dimensional system of collapsing hard disks



We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.


melting of two-dimensional system Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory elastic modulus hexatic phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Alcoutlabi and G. B. McKenna, “Effects of confinement on material behaviour at the nanometre size scale,” J. Phys.: Condens. Matter, 17, R461–R524 (2005).ADSGoogle Scholar
  2. 2.
    S. A. Rice, “Structure in confined colloid suspensions,” Chem. Phys. Lett., 479, 1–13 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    L. B. Krott and M. C. Barbosa, “Anomalies in a waterlike model confined between plates,” J. Chem. Phys., 138, 084505 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Almudallal, S. V. Buldyrev, and I. Saika-Voivod, “Phase diagram of a two-dimensional system with anomalous liquid properties,” J. Chem. Phys., 137, 034507 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    L. B. Krott and J. R. Bordin, “Distinct dynamical and structural properties of a core-softened fluid when confined between fluctuating and fixed walls,” J. Chem. Phys., 139, 154502 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    L. B. Krott and M. C. Barbosa, “Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle–plate interaction potentials,” Phys. Rev. E, 89, 012110 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Bogoliubov, “Quasiaverage in problems of statistical mechanics [in Russian],” in: Collection of Scientific Works: Statistical Mechanics, Vol. 6, Equilibrium Statistical Mechanics: 1945–1986, Nauka, Moscow (2006), pp. 236–360.Google Scholar
  8. 8.
    N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., 176, 250–254 (1968); Erratum, Phys. Rev. B, 20, 4762–4762 (1979); Erratum: Erratum, 74, 149902 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M. Kosterlitz and D. J. Thouless, “Ordering, metastability, and phase transitions in two-dimensional systems,” J. Phys. C, 6, 1181–1203 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    B. I. Halperin and D. R. Nelson, “Theory of two-dimensional melting,” Phys. Rev. Lett., 41, 121–124 (1978); Erratum,, 41, 519 (1978).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. R. Nelson and B. I. Halperin, “Dislocation-mediated melting in two dimensions,” Phys. Rev. B, 19, 2457–2484 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    A. P. Young, “Melting and the vector Coulomb gas in two dimensions,” Phys. Rev. B, 19, 1855–1866 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    U. Gasser, C. Eisenmann, G. Maret, and P. Keim, “Melting of crystals in two dimensions,” Chem. Phys. Chem., 11, 963–970 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Zahn and G. Maret, “Dynamic criteria for melting in two dimensions,” Phys. Rev. Lett., 85, 3656–3659 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    P. Keim, G. Maret, and H. H. von Grünberg, “Frank’s constant in the hexatic phase,” Phys. Rev. E, 75, 031402 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    S. Deutschländer, T. Horn, H. Löwen, G. Maret, and P. Keim, “Two-dimensional melting under quenched disorder,” Phys. Rev. Lett., 111, 098301 (2013); Erratum, 111, 259901 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    T. Horn, S. Deutschländer, H. Löwen, G. Maret, and P. Keim, “Fluctuations of orientational order and clustering in a two-dimensional colloidal system under quenched disorder,” Phys. Rev. E, 88, 062305 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    S. T. Chui, “Grain-boundary theory of melting in two dimensions,” Phys. Rev. B, 28, 178–194 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    W. Janke and H. Kleinert, “Monte Carlo study of two-step defect melting,” Phys. Rev. B, 41, 6848–6863 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    V. N. Ryzhov and E. E. Tareyeva, “Two-stage melting in two dimensions: First-principles approach,” Phys. Rev. B, 51, 8789–8794 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    V. N. Ryzhov and E. E. Tareeva, “Microscopic description of two-stage melting in two dimensions,” JETP, 81, 1115–1123 (1995).ADSGoogle Scholar
  22. 22.
    V. N. Ryzhov and E. E. Tareyeva, “Melting in two dimensions: First-order versus continuous transition,” Phys. A, 314, 396–404 (2002).CrossRefGoogle Scholar
  23. 23.
    L. M. Pomirchi, V. N. Ryzhov, and E. E. Tareeva, “Melting of two-dimensional systems: Dependence of the type of transition on the radius of the potential,” Theor. Math. Phys., 130, 101–110 (2002).CrossRefMATHGoogle Scholar
  24. 24.
    E. S. Chumakov, Y. D. Fomin, E. L. Shangina, E. E. Tareyeva, E. N. Tsiok, and V. N. Ryzhov, “Phase diagram of the system with the repulsive shoulder potential in two dimensions: Density functional approach,” Phys. A, 432, 279–286 (2015).MathSciNetCrossRefGoogle Scholar
  25. 25.
    V. N. Ryzhov, “Disclination-mediated melting of two-dimensional lattices,” Theor. Math. Phys., 88, 990–997 (1991).CrossRefGoogle Scholar
  26. 26.
    V. N. Ryzhov, “Dislocation-disclination melting of two-dimensional lattices,” Sov. Phys. JETP, 73, 899–905 (1991).Google Scholar
  27. 27.
    S. Prestipino, F. Saija, and P. V. Giaquinta, “Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core,” J. Chem. Phys., 137, 104503 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    P. Bladon and D. Frenkel, “Dislocation unbinding in dense two-dimensional crystals,” Phys. Rev. Lett., 74, 2519–2522 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    S. I. Lee and S. J. Lee, “Effect of the range of the potential on two-dimensional melting,” Phys. Rev. E, 78, 041504 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    S. Prestipino, F. Saija, and P. V. Giaquinta, “Hexatic phase in the two-dimensional gaussian-core model,” Phys. Rev. Lett., 106, 235701 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    R. Zangi and S. A. Rice, “Phase transitions in a quasi-two-dimensional system,” Phys. Rev. E, 58, 7529–7544 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    D. Frydel and S. A. Rice, “Phase diagram of a quasi-two-dimensional colloid assembly,” Phys. Rev. E, 68, 061405 (2003).ADSCrossRefGoogle Scholar
  33. 33.
    D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “Melting scenario of the two-dimensional coresoftened system: First-order or continuous transition?” J. Phys.: Conf. Ser., 510, 012016 (2014).Google Scholar
  34. 34.
    D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “Effect of a potential softness on the solid–liquid transition in a two-dimensional core-softened potential system,” J. Chem. Phys., 141, 18C522 (2014).CrossRefGoogle Scholar
  35. 35.
    D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system?” Soft Matter, 10, 4966–4976 (2014).ADSCrossRefGoogle Scholar
  36. 36.
    E. N. Tsiok, D. E. Dudalov, Yu. D. Fomin, and V. N. Ryzhov, “Random pinning changes the melting scenario of a two-dimensional core-softened potential system,” Phys. Rev. E, 92, 032110 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    J. Lee and K. J. Strandburg, “First-order melting transition of the hard-disk system,” Phys. Rev. B, 46, 11190–11193 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    H. Weber, D. Marx, and K. Binder, “Melting transition in two dimensions: A finite-size scaling analysis of bond-orientational order in hard disks,” Phys. Rev. B, 51, 14636–14651 (1995).ADSCrossRefGoogle Scholar
  39. 39.
    C. H. Mak, “Large-scale simulations of the two-dimensional melting of hard disks,” Phys. Rev. E, 73, 065104 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    A. Jaster, “Orientational order of the two-dimensional hard-disk system,” Europhys. Lett., 42, 277–281 (1998).ADSCrossRefGoogle Scholar
  41. 41.
    A. Jaster, “The hexatic phase of the two-dimensional hard disk system,” Phys. Lett. A, 330, 120–125 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    K. Bagchi, H. C. Andersen, and W. Swope, “Computer simulation study of the melting transition in two dimensions,” Phys. Rev. Lett., 76, 255–258 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    K. Bagchi, H. C. Andersen, and W. Swope, “Observation of a two-stage melting transition in two dimensions,” Phys. Rev. E, 53, 3794–3803 (1996).ADSCrossRefGoogle Scholar
  44. 44.
    K. Binder, S. Sengupta, and P. Nielaba, “Liquid–solid transition of hard discs: First-order transition or Kosterlitz–Thouless–Halperin–Nelson–Young scenario?” J. Phys.: Condens. Matter, 14, 2323–2333 (2002).ADSGoogle Scholar
  45. 45.
    R. K. Kalia and P. Vashishta, “Interfacial colloidal crystals and melting transition,” J. Phys. C, 14, L643–L648 (1981).ADSCrossRefGoogle Scholar
  46. 46.
    J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, “Molecular-dynamics study of melting in two dimensions: Inverse-twelfth-power interaction,” Phys. Rev. B, 25, 4651–4669 (1982).ADSCrossRefGoogle Scholar
  47. 47.
    R. S. Singh, M. Santra, and B. Bagchi, “Anisotropy induced crossover from weakly to strongly first order melting of two dimensional solids,” J. Chem. Phys., 138, 184507 (2013).ADSCrossRefGoogle Scholar
  48. 48.
    K. Wierschem and E. Manousakis, “Simulation of melting of two-dimensional Lennard-Jones solids,” Phys. Rev. B, 83, 214108 (2011).ADSCrossRefGoogle Scholar
  49. 49.
    N. Gribova, A. Arnold, T. Schilling, and C. Holm, “How close to two dimensions does a Lennard-Jones system need to be to produce a hexatic phase?” J. Chem. Phys., 135, 054514 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    Yu. E. Lozovik and V. M. Farztdinov, “Oscillation spectra and phase diagram of two-dimensional electron crystal: ‘New’ (3+4)-self-consistent approximation,” Solid State Commun., 54, 725–728 (1985).ADSCrossRefGoogle Scholar
  51. 51.
    Yu. E. Lozovik, V. M. Farztdinov, B. Abdullaev, and S. A. Kucherov, “Melting and spectra of two-dimensional classical crystals,” Phys. Lett. A, 112, 61–63 (1985).ADSCrossRefGoogle Scholar
  52. 52.
    E. P. Bernard and W. Krauth, “Two-step melting in two dimensions: First-order liquid–hexatic transition,” Phys. Rev. Lett., 107, 155704 (2011).ADSCrossRefGoogle Scholar
  53. 53.
    M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, “Hard-disk equation of state: First-order liquid–hexatic transition in two dimensions with three simulation methods,” Phys. Rev. E, 87, 042134 (2013).ADSCrossRefGoogle Scholar
  54. 54.
    W. Qi, A. P. Gantapara, and M. Dijkstra, “Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres,” Soft Matter, 10, 5449–5457 (2014).ADSCrossRefGoogle Scholar
  55. 55.
    S. C. Kapfer and W. Krauth, “Two-dimensional melting: From liquid–hexatic coexistence to continuous transitions,” Phys. Rev. Lett., 114, 035702 (2015).ADSCrossRefGoogle Scholar
  56. 56.
    W.-K. Qi, S.-M. Qin, X.-Y. Zhao, and Y. Chen, “Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems,” J. Phys.: Condens. Matter, 20, 245102 (2008).ADSGoogle Scholar
  57. 57.
    W. Qi and M. Dijkstra, “Destabilisation of the hexatic phase in systems of hard disks by quenched disorder due to pinning on a lattice,” Soft Matter, 11, 2852–2856 (2015).ADSCrossRefGoogle Scholar
  58. 58.
    M. Zu, J. Liu, H. Tong, and N. Xu, “Density affects the nature of the hexatic–liquid transition in two-dimensional melting of soft-core systems,” Phys. Rev. Lett., 085702 (2016); arXiv:1605.00747v2 [cond-mat.soft] (2016).Google Scholar
  59. 59.
    V. N. Ryzhov, “Statistical theory of crystallization in classical systems,” Theor. Math. Phys., 55, 399–405 (1983).MathSciNetCrossRefGoogle Scholar
  60. 60.
    V. N. Ryzhov and E. E. Tareeva, “Towards a statistical theory of freezing,” Phys. Lett. A, 75, 88–90 (1979).ADSCrossRefGoogle Scholar
  61. 61.
    V. N. Ryzhov and E. E. Tareeva, “Statistical theory of crystallization in a system of hard spheres,” Theor. Math. Phys., 48, 835–840 (1981).CrossRefGoogle Scholar
  62. 62.
    M. Baus, “The present status of the density-functional theory of the liquid–solid transition,” J. Phys.: Condens. Matter, 2, 2111–2126 (1990).ADSGoogle Scholar
  63. 63.
    Y. Singh, “Density-functional theory of freezing and properties of the ordered phase,” Phys. Rep., 207, 351–444 (1991).ADSCrossRefGoogle Scholar
  64. 64.
    V. N. Ryzhov and E. E. Tareeva, “Microscopic approach to calculation of the shear and bulk moduli and the frank constant in two-dimensional melting,” Theor. Math. Phys., 92, 922–930 (1992).CrossRefGoogle Scholar
  65. 65.
    V. N. Ryzhov and S. M. Stishov, “A liquid–liquid phase transition in the ‘collapsing’ hard sphere system,” JETP, 95, 710–713 (2002).ADSCrossRefGoogle Scholar
  66. 66.
    V. N. Ryzhov and S. M. Stishov, “Repulsive step potential: A model for a liquid–liquid phase transition,” Phys. Rev. E, 67, 010201 (2003).ADSCrossRefGoogle Scholar
  67. 67.
    S. M. Stishov, “On the phase diagram of a ‘collapsing’ hard-sphere system,” Phil. Mag. B, 82, 1287–1290 (2002).ADSCrossRefGoogle Scholar
  68. 68.
    Y. D. Fomin, N. V. Gribova, V. N. Ryzhov, S. M. Stishov, and D. Frenkel, “Quasibinary amorphous phase in a three-dimensional system of particles with repulsive-shoulder interactions,” J. Chem. Phys., 129, 064512 (2008).ADSCrossRefGoogle Scholar
  69. 69.
    S. V. Buldyrev, G. Malescio, C. A. Angell, N. Giovambattista, S. Prestipino, F. Saija, H. E. Stanley, and L. Xu, “Unusual phase behavior of one-component systems with two-scale isotropic interactions,” J. Phys.: Condens. Matter, 21, 504106 (2009).Google Scholar
  70. 70.
    P. Vilaseca and G. Franzese, “Isotropic soft-core potentials with two characteristic length scales and anomalous behaviour,” J. Non-Crystalline Solids, 357, 419–426 (2011).ADSCrossRefGoogle Scholar
  71. 71.
    N. V. Gribova, Y. D. Fomin, D. Frenkel, and V. N. Ryzhov, “Waterlike thermodynamic anomalies in a repulsiveshoulder potential system,” Phys. Rev. E, 79, 051202 (2009).ADSCrossRefGoogle Scholar
  72. 72.
    Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “Inversion of sequence of diffusion and density anomalies in core-softened systems,” J. Chem. Phys., 135, 234502 (2011).ADSCrossRefGoogle Scholar
  73. 73.
    Y. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “Core-softened system with attraction: Trajectory dependence of anomalous behavior,” J. Chem. Phys., 135, 124512 (2011).ADSCrossRefGoogle Scholar
  74. 74.
    R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, “Superfragile glassy dynamics of a one-component system with isotropic potential: Competition of diffusion and frustration,” Phys. Rev. Lett., 110, 025701 (2013).ADSCrossRefGoogle Scholar
  75. 75.
    Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, “Silicalike sequence of anomalies in core-softened systems,” Phys. Rev. E, 87, 042122 (2013).ADSCrossRefGoogle Scholar
  76. 76.
    E. N. Tsiok, Yu. D. Fomin, and V. N. Ryzhov, “Influence of random pinning on melting scenario of twodimensional core-softened potential system,” arXiv:1608.05232v1 [cond-mat.soft] (2016).Google Scholar
  77. 77.
    V. N. Ryzhov and E. E. Tareyeva, “Bond orientational order in simple liquids,” J. Phys. C: Solid State Phys., 21, 819–824 (1988).ADSCrossRefGoogle Scholar
  78. 78.
    V. N. Ryzhov, “Local structure and bond orientational order in a Lennard-Jones liquid,” J. Phys.: Condens. Matter, 2, 5855–5865 (1990).ADSGoogle Scholar
  79. 79.
    J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Acad. Press, New York (1986).MATHGoogle Scholar
  80. 80.
    R. Lovett, “On the stability of a fluid toward solid formation,” J. Chem. Phys., 66, 1225 (1977).ADSCrossRefGoogle Scholar
  81. 81.
    V. N. Ryzhov, E. E. Tareeva, and Yu. D. Fomin, “Singularity of the ‘swallow-tail’ type and the glass–glass transition in a system of collapsing hard spheres,” Theor. Math. Phys., 167, 645–653 (2011).MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, and E. N. Tsiok, “True Widom line for a square-well system,” Phys. Rev. E, 89, 042136 (2014).ADSCrossRefGoogle Scholar
  83. 83.
    J. L. Colot and M. Baus, “The freezing of hard disks and hyperspheres,” Phys. Lett. A, 119, 135–139 (1986).ADSCrossRefGoogle Scholar
  84. 84.
    M. Baus and J. L. Colot, “Thermodynamics and structure of a fluid of hard rods, disks, spheres, or hyperspheres from rescaled virial expansions,” Phys. Rev. A, 36, 3912–3925 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Vereshchagin Institute for High Pressure Physics, RASMoscowRussia

Personalised recommendations