Skip to main content
Log in

Globally superintegrable Hamiltonian systems

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The generalization of the Mishchenko–Fomenko theorem for symplectic superintegrable systems to the case of an arbitrary, not necessarily compact, invariant submanifold allows giving a global description of a superintegrable Hamiltonian system, which can be split into several nonequivalent globally superintegrable systems on nonoverlapping open submanifolds of the symplectic phase manifold having both compact and noncompact invariant submanifolds. A typical example of such a composition of globally superintegrable systems is motion in a centrally symmetric field, in particular, the two-dimensional Kepler problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Mishchenko and A. T. Fomenko, “Generalized Liouville method of integration of Hamiltonian systems,” Funct. Anal. Appl., 12, 113–121 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. V. Bolsinov and B. Jovanović, “Noncommutative integrability, moment map, and geodesic flows,” Ann. Global Anal. Geom., 23, 305–322 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Fassò, “Francesco superintegrable Hamiltonian systems: Geometry and perturbations,” Acta Appl. Math., 87, 93–121 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. I. Arnold, ed., Dynamical Systems III, IV, Springer, Berlin (1990).

    Book  Google Scholar 

  5. V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions (Ergeb. Math. Grenzgeb., Vol. 24), Springer, Berlin (1993).

    Book  MATH  Google Scholar 

  6. G. Giachetta, L. Mangiarotti, and G. Sardanashvily, “Bi-Hamiltonian partially integrable systems,” J. Math. Phys., 44, 1984–1997 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. E. Fiorani, G. Giachetta, and G. Sardanashvily, “The Liouville–Arnold–Nekhoroshev theorem for non-compact invariant manifolds,” J. Phys. A, 36, L101–L107 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. E. Fiorani and G. Sardanashvily, “Noncommutative integrability on noncompact invariant manifolds,” J. Phys. A, 39, 14035–14042 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. G. Sardanashvily, “Superintegrable Hamiltonian systems with noncompact invariant submanifolds: Kepler system,” Internat. J. Geom. Methods Modern Phys., 6, 1391–1414 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Sardanashvily, Handbook of Integrable Hamiltonian Systems, URSS, Moscow (2015).

    Google Scholar 

  11. E. Fiorani and G. Sardanashvily, “Global action–angle coordinates for completely integrable systems with noncompact invariant submanifolds,” J. Math. Phys., 48, 032901 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J. Duistermaat, “On global action–angle coordinates,” Commun. Pure Appl. Math., 33, 687–706 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Dazord and T. Delzant, “Le probleme general des variables actions–angles,” J. Differ. Geom., 26, 223–251 (1987).

    Article  MATH  Google Scholar 

  14. I. Vaisman, Lectures on the Geometry of Poisson Manifolds (Progr. Math., Vol. 118), Birkhäuser, Basel (1994).

    Book  MATH  Google Scholar 

  15. R. S. Palais, A Global Formulation of the Lie Theory of Transformation Groups (Memoirs Amer. Math. Soc., Vol. 22), Amer. Math. Soc., Providence, R. I. (1957).

    MATH  Google Scholar 

  16. G. Meigniez, “Submersions, fibrations, and bundles,” Trans. Amer. Math. Soc., 354, 3771–3787 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge (1984).

    MATH  Google Scholar 

  18. H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc., 180, 171–188 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser, Basel (1997).

    Book  MATH  Google Scholar 

  20. E. Fiorani, “Momentum maps, independent first integrals, and integrability for central potentials,” Internat. J. Geom. Methods Modern Phys., 6, 1323–1341 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Kurov and G. Sardanashvily, “Partially superintegrable systems on Poisson manifolds,” arXiv:1606.03868v1 [math-ph] (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurov.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 191, No. 3, pp. 389–406, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurov, A.V., Sardanashvily, G.A. Globally superintegrable Hamiltonian systems. Theor Math Phys 191, 811–826 (2017). https://doi.org/10.1134/S0040577917060022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577917060022

Keywords

Navigation