Evidence of the Cometary Nature of Asteroid Don Quixote Provided by Observations at the Sanglokh Observatory

Abstract

We report the results of multicolor optical observations of asteroid (3552) Don Quixote carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan in July 2018. The apparent and absolute magnitudes of the asteroid were determined in the VRI bands. The analysis of the light curves of the asteroid showed that the brightness substantially varied during the observations—from 11.50 ± 0.10 to 13.10 ± 0.18 of absolute it magnitudes. Such a considerable change in the magnitude is indicative of an outburst the asteroid, which means that we detected activity typical for comets. According to our observations, the color index (VR) corresponds to the values for nuclei of extinct short-period comets and D-type asteroids. The comet-like orbit, the low albedo, the color index, and detected activity suggest that the asteroid is very likely the nucleus of an extinct comet. According to the observations performed ten days after the outburst, the mean value of the effective diameter of the asteroid is 18.5 ± 2.5 km; and this estimate agrees well with the data available, which means that the outburst had terminated by that time. We suppose that the dust ejection and, consequently, the outburst resulted from a collision of asteroid 3552 with a small object or from the micrometeoroids bombardment of its surface.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Babadzhanov, P.B. and Kokhirova, G.I., Meteornye potoki asteroidov, peresekayushchikh orbitu Zemli (Meteor Showers of Asteroids Crossing the Earth’s Orbit), Dushanbe: Akad. Nauk Resp. Tadzh. Donish, 2009.

  2. 2

    Belskaya, I.N. and Shevchenko, V.G., Opposition effect of asteroids, Icarus, 2000, vol. 147, pp. 94–105.

    ADS  Article  Google Scholar 

  3. 3

    Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., and Burbine, T.H., Observed spectral properties of Near-Earth objects: Results for population distribution, source regions, and space weathering processes, Icarus, 2004, vol. 170, pp. 259–294.

    ADS  Article  Google Scholar 

  4. 4

    Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J., Levison, H.F., Michel, P., and Metcalfe, T.S., Debiased orbital and absolute magnitude distribution of the near-Earth objects, Icarus, 2002, vol. 156, no. 2, pp. 399–433.

    ADS  Article  Google Scholar 

  5. 5

    Bowell, E., Buie, M.W., and Picken, H., (4015) 1979 VA = Comet Wilson-Harrington (1949), IAUC, 1992, no. 5586.

  6. 6

    Bowell, E., Hapke, B., Dominigue, D., Lumme, K., Peltoniemi, J., and Harris, A.W., Application of photometric models to asteroids, Asteroids II. Proceed. of the Conf., Tucson, AZ, Mar. 8–11, 1988 (A90-27001 10-91), Tucson, AR, 1989, pp. 524–556.

  7. 7

    Bredikhin, F.A., Etyudy o meteorakh (Etudes about Meteors), Moscow: Akad. Nauk SSSR, 1954.

  8. 8

    Busarev, V.V., Detection of the influence of solar activity on the sublimation activity of primitive asteroids, Phys. Curr. State Pros. Astronomy-2018 (XIII Cong. Int. Pub. Org. “Astronomy Society”), Moscow, 2018, vol. 2, pp. 47–50.

  9. 9

    Busarev, V.V., Shcherbina, M.P., Barabanov, S.I., Isrmambetova, T.R., Kokhirova, G.I., Khamroev, U.Kh., Khamitov, I.M., Bikmaev, I.F., Gumerov, R.I., Irtuganov, E.N., and Mel’nikov, S.S., Confirmation of the sublimation activity of the primitive Mine Belt Asteroid 799 Nina, 704 Interamnia, and 145 Adeona, as well as its probable spectral signs on 51 Nemausa and 65 Cebele, Sol. Syst. Res., 2019, vol. 53, pp. 273–290.

    Article  Google Scholar 

  10. 10

    Consolmagno, G.J. and Britt, D.T., The density and porosity of meteorites from the Vatican collection, Meteorit. Planet. Sci., 1998, vol. 33, pp. 1231–1241.

    ADS  Article  Google Scholar 

  11. 11

    Consolmagno, G.J., Britt, D.T., and Macke, R.J., What density and porosity tell us about meteorites, LPI Contrib., 2008, no. 1391, p. 1582.

  12. 12

    Cruikshank, D.P., Dalle Ore, C.M., Roush, T.L., Geballe, T.R., Owen, T.C., de Bergh, C., Cash, M.D., and Hartmann, W.K., Constraints on the composition of Trojan Asteroid 624 Hektor, Icarus, 2001, vol. 153, pp. 348–360.

    ADS  Article  Google Scholar 

  13. 13

    Dahlgren, M. and Lagerkvist, C.I., A study of Hilda asteroids. I CCD spectroscopy of Hilda asteroids, Astron. Astrophys. J., 1995, vol. 302, pp. 363–373.

    Google Scholar 

  14. 14

    Dandy, C.L., Fitzsimmons, A., and Collander-Brown, S.J., Optical colors of 56 near earth objects trends with size and orbit, Icarus, 2009, vol. 163, pp. 114–126.

    Google Scholar 

  15. 15

    Fernandez, Y.R., McFadden, L.A., Lisse, C.M., and Helin, E.F., Analysis of POSS images of comet-asteroid transition object 107P/1949 W1 (Wilson-Harrington), Icarus, 1997, vol. 128, pp. 114–126.

    ADS  Article  Google Scholar 

  16. 16

    Green, D.W.E., Rickman, H., Porter, A.P., Porter, A.C., and Meech, K.J., The strange periodic comet Machholz, Icarus, 1990, vol. 247, pp. 1063–1067.

    Google Scholar 

  17. 17

    Harris, A.W., On the slow rotation of asteroids, Icarus, 2002, vol. 156, pp. 184–190.

    ADS  Article  Google Scholar 

  18. 18

    Hartman, W.K., Tholen, D.J., and Cruikshank, D.P., The relationship of active comets, “extinct” comets, and dark asteroids, Icarus, 1987, vol. 69, pp. 33–50.

    ADS  Article  Google Scholar 

  19. 19

    Hsieh, H. and Jewitt, D., Main belt comets: Ice in the inner solar system, Bull. Am. Astron. Soc., 2006, vol. 38, p. 492.

    ADS  Google Scholar 

  20. 20

    Hsieh, H., Active asteroids: Main-belt comets and disrupted asteroids, Proc. IAU, 2016, vol. 29A, pp. 237–240.

  21. 21

    Hsieh, H., Jewitt, D., and Fernandez, Y., Albedos of main-belt comets 133P/Elst-Pizarro and 176P/LINEAR), Astrophys. J. Lett., 2009b, vol. 694, pp. L111–L114.

    ADS  Article  Google Scholar 

  22. 22

    Hsieh, H., Jewitt, D., and Ishugro, M., Physical properties of Main-Belt Comet P/2005 U1 (Read), Astron. J., 2009a, vol. 137, pp. 157–168.

    ADS  Article  Google Scholar 

  23. 23

    Jewitt, D., Color systematics of comets and related bodies, Astron. J., 2015, vol. 150, p. 201.

    ADS  Article  Google Scholar 

  24. 24

    Jewitt, D., Hsieh, H., and Agarwal, J., The active of asteroids, in Asteroids IV, Michel, P., DeMeo, F., and Bottke, W., Eds., Tucson: Univ. Arizona Press, 2015, pp. 221–241.

    Google Scholar 

  25. 25

    Jewitt, D., Introductory report: Physical properties of cometary nuclei, Proc. Liege Inst. Astrophys. Colloq., 1992, vol. 30, pp. 85–111.

    ADS  Google Scholar 

  26. 26

    Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, pp. 66–80.

    ADS  Article  Google Scholar 

  27. 27

    Jewitt, D., Yang, B., and Haghighipour, N., Main belt of asteroids comet P/2008 (Garradd), Astron. J., 2009, vol. 137, pp. 4313–4321.

    ADS  Article  Google Scholar 

  28. 28

    Kokhirova, G.I., Ivanova, A.V., Rakhmatullaeva, F.Dzh., Khamroev, U.Kh., Buriev, A.M., and Abdulloev, S.Kh., Results of complex observations of asteroid (596) Scheila at the Sanglokh International Astronomical Observatory, Sol. Syst. Res., 2018, vol. 52, pp. 495–504.

    ADS  Article  Google Scholar 

  29. 29

    Kosai, H., Short-period comets and Apollo-Amur-Aten type asteroids in view in Tisserand invariant, Celest. Mech. Dyn. Astron., 1992, vol. 54, pp. 237–240.

    ADS  Article  Google Scholar 

  30. 30

    Kresak, L., On the similarity of orbits of associated comets, asteroids and meteoroids, Bull. Astr. Inst. Czech., 1982, vol. 33, p. 104.

    ADS  MATH  Google Scholar 

  31. 31

    Kresak, L., The discrimination between cometary and asteroidal meteors. I. The orbital criteria, Bull. Astr. Inst. Czech., 1969, vol. 20, p. 177.

    ADS  Google Scholar 

  32. 32

    Lamy, P. and Toth, I., The color of cometary nuclei: Comparison with other primitive bodies of the solar system and implications for their origin, Icarus, 2009, vol. 201, pp. 674–713.

    ADS  Article  Google Scholar 

  33. 33

    Lamy, P.L., Toth, I., Fernandez, Y.R., and Weaver, H.A., The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, Festou, M.C., Keller, H.U., and Weaver, H.A., Eds., Tucson: Univ. Arizona Press, 2004, pp. 223–264.

    Google Scholar 

  34. 34

    Landsman, W.B., The IDL astronomy user’s library, ASP Conf. Ser., 1993, vol. 52, pp. 246–248.

    Google Scholar 

  35. 35

    Levison, H. and Duncan, M., From the Kuiper Belt to Jupiter-Family comets: The spatial distribution of ecliptic comets, Icarus, 1997, vol. 127, pp. 13–32.

    ADS  Article  Google Scholar 

  36. 36

    Licandro, J., Alvarez-Candal, A., de-Leon, J., Pinnila-Alonso, N., Lazzaro, D., and Campins, H., Spectral prosperities of asteroids in cometary orbits, Astrophys. J., 2008, vol. 481, pp. 861–877.

    Google Scholar 

  37. 37

    Lumme, M., Nieminen, M., Torsti, J.J., Vainikka, E., Peltonen, J., Valtonen, E., and Arvela, H., Interplanetary propagation of relativistic solar protons, Sol. Phys., 1986, vol. 107, pp. 183–194.

    ADS  Article  Google Scholar 

  38. 38

    Lupishko, D.F., Kruglyi, Yu.N., and Shevchenko, V.G., Photometry of asteroids, Kinemat. Fiz. Nebesn. Tel, 2007, vol. 23, pp. 235–244.

    ADS  Google Scholar 

  39. 39

    Lupishko, D.F., Physical properties of asteroids, Vestn. Astron. Shk., 2000, vol. 1, pp. 63–77.

    Google Scholar 

  40. 40

    Mommert, M., Hora, J.L., Harris, A.W., Reach, W.T., Emery, J.P., Thomas, C.A., Mueller, M., Cruikshank, D.P., Trilling, D.E., Delbo, M., and Smith, H.A., The discovery of cometary activity in Near-Earth Asteroid (3552) Don Quixote, Astrophys. J., 2014, vol. 781.

  41. 41

    Mommert, M., Polishook, D., and Moskovitz, N., Don Quixote, 2018b. CBET 4502: 20180329. http://www.cbat.eps.harvard.edu/index.html.

  42. 42

    Mommert, M., Trilling, D., Knight, M.M., Hora, J., Biver, N., Womack, M., Wierzchos, K., Polishook, D., Veres, P., Gustafson, A., McNeill, A., Skiff, B., Wainscoat, R., Kelley, M.S., Moskowitz, N., and Harrington, O., Systematic characterization and monitoring of potentially active asteroid: The case of Don Quixote, Am. Astron. Soc., 2018a, vol. 50.

    Google Scholar 

  43. 43

    Morbidelli, A. and Gladman, B., Orbital and temporal distributions of meteorites originating in the asteroid belt, Meteor. Planet. Sci., 1998, vol. 33, pp. 999–1016.

    ADS  Article  Google Scholar 

  44. 44

    Neslushan, L., Ivanova, O., Husarik, M., Svoren, J., and Krisandova, Z.S., Dust productivity and impact collision of the asteroid 596 (Scheila), Planet. Space Sci., 2016, vol. 125, pp. 37–42.

    ADS  Article  Google Scholar 

  45. 45

    Opik, E., The stray bodies in the solar system. I. Survival time of cometary nuclei, Adv. Astron. Astrophys., 1963, vol. 2, pp. 219–262.

    ADS  Article  Google Scholar 

  46. 46

    Penttila, A., Shevchenko, V.G., Wilkman, O., and Muinonen, K.H., H, G1, G2 photometric phase function extended to low-accuracy data, Planet. Space Sci., 2016, vol. 123, pp. 117–125.

    ADS  Article  Google Scholar 

  47. 47

    Rickman, H., Gustafson, B.A.S., and Fernandez, J.A., Model calculations of mantle formation on comet nuclei, in Asteroids, Comets, Meteors III (ACM) 1989, Lagerkvist, C.I., Rickman, H., and Lindblad, B.A., Eds., Uppsala: Uppsala Univ., 1990, pp. 423–426.

  48. 48

    Sekanina, Z., Periodic comet Machholz and its idiosyncrasies, Astron. J., 1990, vol. 99, pp. 1269–1277.

    ADS  Article  Google Scholar 

  49. 49

    Solontoi, M., Ivezic, Z., Juric, M., Becker, A.C., Jones, L., West, A.A., Kent, S., Lupton, R.H., Claire, M., Knapp, G.R., Quinn, T., Gunn, J.E., and Schneider, D.P., Ensemble properties of comets in the Sloan digital sky survey, Icarus, 2012, vol. 128, pp. 571–584.

    ADS  Article  Google Scholar 

  50. 50

    Tholen, D.J., Asteroid taxonomic classification, in Asteroids, Binzel, R.P., Gehrels, T., and Mattews, M.S, Eds., Tucson: Univ. Arizona Press, 1989, pp. 1139–1150.

    Google Scholar 

  51. 51

    Veeder, G.J., Hanner, M.S., Matson, D.L., Tedesco, E.F., Lebofsky, L.A., and Tokunaga, A.T., Radiometry of Near-Earth asteroids, Astron. J., 1989, vol. 97, pp. 1211–1219.

    ADS  Article  Google Scholar 

  52. 52

    Weissman, P., Bottke, W., and Levison, H., Evolution of comet into asteroid, in Asteroids III, Bottke, W., Cellino, A., Paolicchi, P., and Binzel, R., Eds., Tucson: Univ. Arizona Press, 2002, pp. 669–686.

    Google Scholar 

  53. 53

    Weissman, P.R., A’Hearn, M.F., McFadden, L.A., and Rickman, H., Evolution of comets into asteroids, in Asteroids II, Binzel, R.P., Gehrels, T., and Mattews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 880–920.

    Google Scholar 

  54. 54

    Whipple, F.L., A comet model I. The acceleration of comet Encke, Astrophys. J., 1950, vol. 111, pp. 375–394.

    ADS  Article  Google Scholar 

  55. 55

    Whipple, F.L., A comet model II. Physical relation for comets and meteors, Astrophys. J., 1951, vol. 121, pp. 750–770.

    ADS  Article  Google Scholar 

  56. 56

    Whipple, F.L., A comet model III. The zodiacal light, Astrophys. J., 1951, vol. 56, pp. 144–145.

    Google Scholar 

  57. 57

    https://www.harrisgeospatial.com/Software-Technology/IDL.

  58. 58

    https://www.harvard.edu/catalogs/index.html.

  59. 59

    https://www.ssd.jpl.nasa.gov/sbdb.cgi#top, 2019.

Download references

Funding

A.V. Ivanova was supported by the Slovak Academy of Sciences (project no. VEGA 2/0023/18).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. I. Kokhirova.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kokhirova, G.I., Ivanova, O.V. & Rakhmatullaeva, F.D. Evidence of the Cometary Nature of Asteroid Don Quixote Provided by Observations at the Sanglokh Observatory. Sol Syst Res 55, 61–70 (2021). https://doi.org/10.1134/S0038094620330023

Download citation

Keywords:

  • asteroid
  • extinct comet
  • observations
  • photometry
  • absolute magnitude
  • light curve
  • color index
  • outburst
  • activity
  • diameter