Skip to main content
Log in

Numerical Simulation of Ionospheric Disturbances Generated by the Chelyabinsk and Tunguska Space Body Impacts

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artemieva, N.A. and Shuvalov, V.V., From Tunguska to Chelyabinsk via Jupiter, Annu. Rev. Earth Planet. Sci., 2016, vol. 44, pp. 37–56.

    Article  ADS  Google Scholar 

  • Berngardt, O.I., Perevalova, N.P., Kutelev, K.A., Zherebtsov, G.A., Dobrynina, A.A., Shestakov, N.V., Zagretdinov, R.V., Bakhtiyarov, V.F., and Kusonsky, O.A., Toward the azimuthal characteristics of ionospheric and seismic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks, J. Geophys. Res., 2015, vol. 120, no. 12, pp. 10754–10771.

    ADS  Google Scholar 

  • Bilitza, D., Altadill, D., Altadill, D., Zhang, Y., Zhang, Y., Mertens, C., Mertens, C., Truhlik, V., Truhlik, V., Richards, P., Richards, P., McKinnell, L.-A., McKinnell, L.-A., and Reinisch, B., The International Reference Ionosphere 2012—a model of international collaboration, J. Space Weath. Space Clim., 2014, vol. 4, no. A07, p. 12.

    Google Scholar 

  • Boslough, M.B. and Crawford, D.A., Shoemaker-Levy 9 and plume-forming collisions on Earth, Proc. United Nations Int. Conf. “Near-Earth Objects,” Remo, J.L., Ed., New York: NY Acad. Sci., 1997, pp. 236–282.

    Google Scholar 

  • CIRA, COSPAR International Reference Atmosphere, Amsterdam: North Holland, 1961.

    Google Scholar 

  • Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The Chelyabinsk meteorite: Ionospheric response based on GPS measurements, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 948–952.

    Article  ADS  Google Scholar 

  • Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The ionospheric response to the acoustic signal from submarine earthquakes according to the GPS data, Izv. Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 1–8.

    Article  ADS  Google Scholar 

  • Hedin, A.E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res.: Space Phys., 1991, vol. 96, no. 2, pp. 1159–1172.

    Article  ADS  Google Scholar 

  • Hernández-Pajares, M., Juan, J.M., and Sanz, J., Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis, J. Geophys. Res., 2006, vol. 111, pp. 1–13.

    Article  Google Scholar 

  • Huang, K.M., Zhang, S.D., Yi, F., Huang, C.M., Gan, Q., Gong, Y., and Zhang, Y.H., Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere, Ann. Geophys., 2014, vol. 32, pp. 263–275.

    Article  ADS  Google Scholar 

  • Ivanov, K.G., Geomagnetic effect of the Tunguska meteorite fall, Meteoritika, 1964, no. 24, pp. 141–151.

    Google Scholar 

  • Khazins, V.M. and Shuvalov, V.V., Numerical modeling of acoustic-gravitational waves initiated by the fall of a meteoroid, in Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Nauch. Tr. Inst. Din. Geosfer, Ross. Akad. Nauk, Moscow: GEOS, 2016, no. 8, pp. 197–207.

    Google Scholar 

  • Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamic Functions and Impact Adiabats of Air at the High Temperatures), Moscow: Mashinostroenie, 1965.

    Google Scholar 

  • Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Takahashi, H., and Guojie, M., Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations, Geophys. Res. Lett., 2015, vol. 42, pp. 6535–6543.

    Article  ADS  Google Scholar 

  • Popova, O.P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., Grokhovsky, V.I., Badyukov, D.D., Yin, Q.-Z., Gural, P.S., Albers, J., Granvik, M., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, no. 6162, pp. 1069–1073.

    Article  ADS  Google Scholar 

  • Ruzhin, Y.Y., Kuznetsov, V.D., and Smirnov, V.M., Ionospheric response to the entry and explosion of the South Ural superbolide, Geomagn. Aeron., 2014a, vol. 54, no. 5, pp. 601–612.

    Article  ADS  Google Scholar 

  • Ruzhin, Yu.Ya., Kuznetsov, V.M., and Smirnov, V.M., The ionosphere effects of the Chelyabinsk meteoroid explosion, Int. J. Electron. Appl. Res., 2014b, vol. 1, no. 2, pp. 39–60.

    Google Scholar 

  • Shuvalov, V.V., Multi-dimensional hydrodynamic code SOVA for interfacial flows: application to thermal layer effect, Shock Waves, 1999a, vol. 9, no. 6, pp. 381–390.

    Article  ADS  MATH  Google Scholar 

  • Shuvalov, V.V., Atmospheric plumes created by meteoroids impacting the Earth, J. Geophys. Res.: Planets, 1999b, vol. 104, no. 3, pp. 5877–5890.

    Article  ADS  MathSciNet  Google Scholar 

  • Shuvalov, V.V. and Artemieva, N.A., Numerical modeling of Tunguska-like impacts, Planet. Space Sci., 2002, vol. 50, pp. 181–192.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V., Popova, O.P., Svettsov, V.V., Trubetskaya, I.A., and Glazachev, D.O., Determination of the height of the “meteoric explosion,” Sol. Syst. Res., 2016, vol. 50, no. 1, pp. 1–12.

    Article  ADS  Google Scholar 

  • Shuvalov, V.V., Svettsov, V.V., Artem’eva, N.A., Trubetskaya, I.A., Popova, O.P., and Glazachev, D.O., Asteroid Apophis: evaluating the impact hazards of such bodies, Sol. Syst. Res., 2017, vol. 51, no. 1, pp. 44–58.

    Article  ADS  Google Scholar 

  • Voeykov, S.V., Berngardt, O.I., and Shestakov, N.V., Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite, Geomagn. Aeron., 2016, vol. 56, no. 2, pp. 219–228.

    Article  ADS  Google Scholar 

  • Xu, J., Smith, A.K., and Ma, R., A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region, J. Geophys. Res.: Atmos., 2003, vol. 108, no. 3, pp. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shuvalov.

Additional information

Original Russian Text © V.V. Shuvalov, V.M. Khazins, 2018, published in Astronomicheskii Vestnik, 2018, Vol. 52, No. 2, pp. 142–151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.V., Khazins, V.M. Numerical Simulation of Ionospheric Disturbances Generated by the Chelyabinsk and Tunguska Space Body Impacts. Sol Syst Res 52, 129–138 (2018). https://doi.org/10.1134/S0038094618010094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094618010094

Keywords

Navigation