Solar System Research

, Volume 52, Issue 2, pp 129–138 | Cite as

Numerical Simulation of Ionospheric Disturbances Generated by the Chelyabinsk and Tunguska Space Body Impacts

Article
  • 8 Downloads

Abstract

Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.

Keywords

asteroid comet asteroid danger shockwave meteoric explosion numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artemieva, N.A. and Shuvalov, V.V., From Tunguska to Chelyabinsk via Jupiter, Annu. Rev. Earth Planet. Sci., 2016, vol. 44, pp. 37–56.ADSCrossRefGoogle Scholar
  2. Berngardt, O.I., Perevalova, N.P., Kutelev, K.A., Zherebtsov, G.A., Dobrynina, A.A., Shestakov, N.V., Zagretdinov, R.V., Bakhtiyarov, V.F., and Kusonsky, O.A., Toward the azimuthal characteristics of ionospheric and seismic effects of “Chelyabinsk” meteorite fall according to the data from coherent radar, GPS, and seismic networks, J. Geophys. Res., 2015, vol. 120, no. 12, pp. 10754–10771.ADSGoogle Scholar
  3. Bilitza, D., Altadill, D., Altadill, D., Zhang, Y., Zhang, Y., Mertens, C., Mertens, C., Truhlik, V., Truhlik, V., Richards, P., Richards, P., McKinnell, L.-A., McKinnell, L.-A., and Reinisch, B., The International Reference Ionosphere 2012—a model of international collaboration, J. Space Weath. Space Clim., 2014, vol. 4, no. A07, p. 12.Google Scholar
  4. Boslough, M.B. and Crawford, D.A., Shoemaker-Levy 9 and plume-forming collisions on Earth, Proc. United Nations Int. Conf. “Near-Earth Objects,” Remo, J.L., Ed., New York: NY Acad. Sci., 1997, pp. 236–282.Google Scholar
  5. CIRA, COSPAR International Reference Atmosphere, Amsterdam: North Holland, 1961.Google Scholar
  6. Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The Chelyabinsk meteorite: Ionospheric response based on GPS measurements, Dokl. Earth Sci., 2013, vol. 452, no. 1, pp. 948–952.ADSCrossRefGoogle Scholar
  7. Gokhberg, M.B., Ol’shanskaya, E.V., Steblov, G.M., and Shalimov, S.L., The ionospheric response to the acoustic signal from submarine earthquakes according to the GPS data, Izv. Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 1–8.ADSCrossRefGoogle Scholar
  8. Hedin, A.E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res.: Space Phys., 1991, vol. 96, no. 2, pp. 1159–1172.ADSCrossRefGoogle Scholar
  9. Hernández-Pajares, M., Juan, J.M., and Sanz, J., Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis, J. Geophys. Res., 2006, vol. 111, pp. 1–13.CrossRefGoogle Scholar
  10. Huang, K.M., Zhang, S.D., Yi, F., Huang, C.M., Gan, Q., Gong, Y., and Zhang, Y.H., Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere, Ann. Geophys., 2014, vol. 32, pp. 263–275.ADSCrossRefGoogle Scholar
  11. Ivanov, K.G., Geomagnetic effect of the Tunguska meteorite fall, Meteoritika, 1964, no. 24, pp. 141–151.Google Scholar
  12. Khazins, V.M. and Shuvalov, V.V., Numerical modeling of acoustic-gravitational waves initiated by the fall of a meteoroid, in Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geospheres), Nauch. Tr. Inst. Din. Geosfer, Ross. Akad. Nauk, Moscow: GEOS, 2016, no. 8, pp. 197–207.Google Scholar
  13. Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamic Functions and Impact Adiabats of Air at the High Temperatures), Moscow: Mashinostroenie, 1965.Google Scholar
  14. Perevalova, N.P., Shestakov, N.V., Voeykov, S.V., Takahashi, H., and Guojie, M., Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations, Geophys. Res. Lett., 2015, vol. 42, pp. 6535–6543.ADSCrossRefGoogle Scholar
  15. Popova, O.P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., Grokhovsky, V.I., Badyukov, D.D., Yin, Q.-Z., Gural, P.S., Albers, J., Granvik, M., et al., Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization, Science, 2013, vol. 342, no. 6162, pp. 1069–1073.ADSCrossRefGoogle Scholar
  16. Ruzhin, Y.Y., Kuznetsov, V.D., and Smirnov, V.M., Ionospheric response to the entry and explosion of the South Ural superbolide, Geomagn. Aeron., 2014a, vol. 54, no. 5, pp. 601–612.ADSCrossRefGoogle Scholar
  17. Ruzhin, Yu.Ya., Kuznetsov, V.M., and Smirnov, V.M., The ionosphere effects of the Chelyabinsk meteoroid explosion, Int. J. Electron. Appl. Res., 2014b, vol. 1, no. 2, pp. 39–60.Google Scholar
  18. Shuvalov, V.V., Multi-dimensional hydrodynamic code SOVA for interfacial flows: application to thermal layer effect, Shock Waves, 1999a, vol. 9, no. 6, pp. 381–390.ADSCrossRefMATHGoogle Scholar
  19. Shuvalov, V.V., Atmospheric plumes created by meteoroids impacting the Earth, J. Geophys. Res.: Planets, 1999b, vol. 104, no. 3, pp. 5877–5890.ADSMathSciNetCrossRefGoogle Scholar
  20. Shuvalov, V.V. and Artemieva, N.A., Numerical modeling of Tunguska-like impacts, Planet. Space Sci., 2002, vol. 50, pp. 181–192.ADSCrossRefGoogle Scholar
  21. Shuvalov, V.V., Popova, O.P., Svettsov, V.V., Trubetskaya, I.A., and Glazachev, D.O., Determination of the height of the “meteoric explosion,” Sol. Syst. Res., 2016, vol. 50, no. 1, pp. 1–12.ADSCrossRefGoogle Scholar
  22. Shuvalov, V.V., Svettsov, V.V., Artem’eva, N.A., Trubetskaya, I.A., Popova, O.P., and Glazachev, D.O., Asteroid Apophis: evaluating the impact hazards of such bodies, Sol. Syst. Res., 2017, vol. 51, no. 1, pp. 44–58.ADSCrossRefGoogle Scholar
  23. Voeykov, S.V., Berngardt, O.I., and Shestakov, N.V., Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite, Geomagn. Aeron., 2016, vol. 56, no. 2, pp. 219–228.ADSCrossRefGoogle Scholar
  24. Xu, J., Smith, A.K., and Ma, R., A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region, J. Geophys. Res.: Atmos., 2003, vol. 108, no. 3, pp. 1–12.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Geosphere Dynamicsthe Russian Academy of SciencesMoscowRussia

Personalised recommendations