Skip to main content
Log in

Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

We have performed the calculations of the orbital evolution of dust particles from volcanic glass (p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting–Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0–7.6 solar radii for standard particles of the zodiacal cloud and 9.1–9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimanov, A.K., Aimanova, G.K., and Shestakova, L.I., Radial velocities in the F-corona on July 11, 1991, Astron. Lett., 1995, vol. 21, no. 2, pp. 196–198.

    ADS  Google Scholar 

  • Beavers, W.I. and Eitter, J.J., Radial velocity discriminated coronal photometric measurements at the July 11, 1991 total eclipse, Planet. Space Sci., 2009, vol. 57, pp. 332–343.

    Article  ADS  Google Scholar 

  • Belton, M.J.S., Dynamics of interplanetary dust, Science, 1966, vol. 151, pp. 35–44.

    Article  ADS  Google Scholar 

  • Blackwell, D.E., A study of the outer corona from a high altitude aircraft at the eclipse of 1954 June 30. I. Observational data, Mon. Not. R. Astron. Soc., 1955, vol. 115, pp. 629.

    Article  ADS  Google Scholar 

  • Boren, C.F. and Hafmen, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  • Burns, J.A., Lamy, P.L., and Soter, S., Radiation forces on small particles in the Solar system, Icarus, 1979, vol. 40, pp. 1–48.

    Article  ADS  Google Scholar 

  • Dorschner, J., Begemann, B., Henning, Th., Jager, C., and Mutschke, H., Steps toward interstellar silicate mineralogy II. Study of Mg–Fe-silicate glasses of variable composition, Astron. Astrophys., 1995, vol. 300, pp. 503–520.

    ADS  Google Scholar 

  • Draine, B.T., Tabulated optical properties of graphite and silicate grains, Astrophys. J., 1985, vol. 57, suppl., pp. 587–594.

    Article  ADS  Google Scholar 

  • Hodapp, K.-W., MacQueen, R.M., and Hall, D.N.B., A search during the 1991 solar eclipse for the infrared signature of circumsolar dust, Nature, 1992, vol. 355, pp. 707–710.

    Article  ADS  Google Scholar 

  • Ingham, M.F., The nature and distribution of the interplanetary dust, Mon. Not. R. Astron. Soc., 1961, vol. 122, pp. 157–176.

    Article  ADS  Google Scholar 

  • Kaiser, C.B., The thermal emission of the F Corona, Astrophys. J., 1970, vol. 159, pp. 77–92.

    Article  ADS  Google Scholar 

  • Kelsall, T., Weiland, J.L., Franz, B.A. Reach, W.T., Arendt, R.G., Dwek, E., Freudenreich, H.T., Hauser, M.G., Moseley, S.H., and Odegard, N.P., The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud, Astrophys. J., 1998, vol. 508, pp. 44–73.

    Article  ADS  Google Scholar 

  • Kobayashi, H., Kimura, H., Watanabe, S., Yamamoto, T., and Müller, S., Sublimation temperature of circumstellar dust particles and its importance for dust ring formation, Earth, Planets Space, 2011, vol. 63, pp. 1067–1075.

    Article  ADS  Google Scholar 

  • Lamy, P.L., The dynamics of circum-solar dust grains, Astron. Astrophys., 1974a, vol. 33, pp. 191–194.

    ADS  Google Scholar 

  • Lamy, P.L., Interaction of interplanetary dust grains with the solar radiation field, Astron. Astrophys., 1974b, vol. 35, pp. 197–207.

    ADS  Google Scholar 

  • Lamy, P.L., Optical properties of silicates in the far ultraviolet, Icarus, 1978, vol. 34, pp. 68–75.

    Article  ADS  Google Scholar 

  • Lamy, P.L., Kuhn, J.R., Lin, H., Koutchmy, S., and Smartt, R.N., No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse, Science, 1992, vol. 257, pp. 1377–1380.

    Article  ADS  Google Scholar 

  • Leinert, C., Zodiacal light—a measure of the interplanetary environment, Space Sci. Rev., 1975, vol. 18, pp. 281–339.

    Article  ADS  Google Scholar 

  • Lena, P., Hall, D., Soufflot, A., and Viala, Y., The thermal emission of the dust corona, during the eclipse of June 30, 1973. II–Photometric and spectral observations, Astron. Astrophys., 1974, vol. 37, pp. 81–86.

    ADS  Google Scholar 

  • MacQween, R.M., Infrared observation of the outer solar corona, Astrophys. J., 1968, vol. 154, pp. 1059–1076.

    Article  ADS  Google Scholar 

  • Makarov, E.A., Kharitonov, A.V., and Kazachevskaya, T.V., Potok solnechnogo izlucheniya (The Flux of Solar Radiation), Moscow: Nauka, 1991.

    Google Scholar 

  • Mann, I. and MacQueen, R.M., The solar F-corona at 2.12 pin: calculations of near-solar dust in comparison to 1991 eclipse observations, Astron. Astrophys., 1993, vol. 275, pp. 293–297.

    ADS  Google Scholar 

  • Masafumi, M. and Munezo, S., Polarization efficiency and phase function, calculated on the basis of the Mie theory, Sci. Rep. Tohoku Univ., Ser. 8, 1985, vol. 6, no. 1, pp. 11–48.

    Google Scholar 

  • Mukai, T. and Yamamoto, T., A model of the circumsolar dust cloud, Publ. Astron. Soc. Jpn., 1979, vol. 31, pp. 585–596.

    ADS  Google Scholar 

  • Mukai, T., Yamamoto, T., Hasegawa, A. Fujiwara, A., and Koike, C., On the circumsolar grain materials, Publ. Astron. Soc. Jpn., 1974, vol. 26, pp. 445–458.

    ADS  Google Scholar 

  • Pollack, J.B., Toon, O.B., and Khare, B.N., Optical properties of some terrestrial rocks and glasses, Icarus, 1973, vol. 19, pp. 372–389.

    Article  ADS  Google Scholar 

  • Peterson, A.W., Experimental detection of thermal radiation from interplanetary dust, Astrophys. J., 1967, vol. 148, pp. L37–L39.

    Article  ADS  Google Scholar 

  • Reach, W.T., Franz, B.A., and Weiland, J.L., The threedimensional structure of the zodiacal dust bands, Icarus, 1997, vol. 127, pp. 461–484.

    Article  ADS  Google Scholar 

  • Roser, S. and Staude, H.J., The Zodiacal light from 1500 Å to 60 micron, Astron. Astrophys., 1978, vol. 67, pp. 381–394.

    ADS  Google Scholar 

  • Shcheglov, P.V., Shestakova, L.I., and Ajmanov, A.K., Results of interferometric observations of the F-corona radial velocity field between 3 and 7 solar radii, Astron. Astrophys., 1987, vol. 173, pp. 383–388.

    ADS  Google Scholar 

  • Shestakova, L.I., Interpretation of F-corona radial velocity observations, Astron. Astrophys., 1987, vol. 175, pp. 289–291.

    ADS  Google Scholar 

  • Shestakova, L.I. and Demchenko, B.I., Results of observations of the dust distribution in the F-corona of the Sun, Sol. Syst. Res., 2016, vol. 50, no. 2, pp. 143–160.

    Article  ADS  Google Scholar 

  • Shestakova, L.I. and Tambovtseva, L.V., Dynamics of dust grains near the Sun, Astron. Astrophys., 1995, vol. 8, pp. 59–81.

    Google Scholar 

  • Shestakova, L.I., Rspaev, F.K., Minasyants, G.S., and Dubovitskij, A.I., The observation of total solar eclipse on March 29, 2006 in Kazakhstan, Odessa Astron. Publ., 2007, vol. 20, pp. 203–204.

    ADS  Google Scholar 

  • Shestakova, L.I., Demchenko, B.I., Rspaev, F.K., Minasyants, G.S., and Dubovitskii, A.I., Observation of the radial velocities of dust in the F-corona during a total solar eclipse on August 1, 2008, Izv. Akad. Nauk Resp. Kazakh., Ser. Fiz.-Matem., 2009, no. 4, pp. 97–104.

    Google Scholar 

  • Veselovskii, I.S., Solar wind and heliospheric magnetic field, in Model’ kosmosa. Tom 1. Fizicheskie usloviya v kosmicheskom prostranstve (Space Model, Vol. 1: Physical Conditions in the Space), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: Universitet, 2007, pp. 314–359.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Shestakova.

Additional information

Original Russian Text © L.I. Shestakova, B.I. Demchenko, 2018, published in Astronomicheskii Vestnik, 2018, Vol. 52, No. 2, pp. 168–182.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, L.I., Demchenko, B.I. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun. Sol Syst Res 52, 153–167 (2018). https://doi.org/10.1134/S0038094618010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094618010082

Keywords

Navigation