Binarity of Almost ω-Categorical Quite o-Minimal Theories


Studying the properties of almost ω-categorical quite o-minimal theories, we prove that the arbitrary families of pairwise weakly orthogonal nonalgebraic 1-types in these theories are orthogonal. We also establish the binarity of these theories.

This is a preview of subscription content, log in to check access.


  1. 1.

    Macpherson H. D., Marker D., and Steinhorn C., “Weakly o-minimal structures and real closed fields,” Trans. Amer. Math. Soc., vol. 352, no. 12, 5435–5483 (2000).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Baizhanov B. S., “Expansion of a model of a weakly o-minimal theory by a family of unary predicates,” J. Symb. Log., vol. 66, no. 3, 1382–1414 (2001).

    MathSciNet  Article  Google Scholar 

  3. 3.

    Kulpeshov B. Sh., “The convexity rank and orthogonality in weakly o-minimal theories,” Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat., vol. 227, no. 1, 26–31 (2003).

    MathSciNet  Google Scholar 

  4. 4.

    Ikeda K., Pillay A., and Tsuboi A., “On theories having three countable models,” Math. Logic Quart., vol. 44, no. 2, 161–166 (1998).

    MathSciNet  Article  Google Scholar 

  5. 5.

    Sudoplatov S. V., Classification of Countable Models of Complete Theories. Parts 1 and 2 [Russian], Izdat. NGTU, Novosibirsk (2018).

    Google Scholar 

  6. 6.

    Kulpeshov B. Sh. and Sudoplatov S. V., “Vaught’s conjecture for quite o-minimal theories,” Ann. Pure Appl. Logic, vol. 168, no. 1, 129–149 (2017).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Mayer L. L., “Vaught’s conjecture for o-minimal theories,” J. Symb. Log., vol. 53, no. 1, 146–159 (1988).

    MathSciNet  Article  Google Scholar 

  8. 8.

    Emelyanov D. Yu., Kulpeshov B. Sh., and Sudoplatov S. V., “Algebras of distributions of binary isolating formulas for quite o-minimal theories,” Algebra and Logic, vol. 57, no. 6, 429–444 (2018).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Kulpeshov B. Sh., “Maximality of the countable spectrum in small quite o-minimal theories,” Algebra and Logic, vol. 58, no. 2, 137–143 (2019).

    Article  Google Scholar 

  10. 10.

    Kulpeshov B. Sh. and Sudoplatov S. V., “Linearly ordered theories which are nearly countably categorical,” Math. Notes, vol. 101, no. 3, 475–483 (2017).

    MathSciNet  Article  Google Scholar 

  11. 11.

    Woodrow R. E., Theories with a Finite Number of Countable Models and a Small Language, Ph. D. Thes. Simon Fraser Univ. (1976).

  12. 12.

    Baizhanov B. S., “One-types in weakly o-minimal theories,” in: Proc. Informatics and Control Problems Institute, Informatics and Control Problems Inst., Almaty, 1996, 75–88.

    Google Scholar 

  13. 13.

    Baizhanov B. S. and Kulpeshov B. Sh., “On behaviour of 2-formulas in weakly o-minimal theories,” in: Mathematical Logic in Asia, Proc. 9th Asian Logic Conf., World Sci., Singapore, 2006, 31–40.

    Google Scholar 

  14. 14.

    Kulpeshov B. Sh., “Weakly o-minimal structures and some of their properties,” J. Symb. Log., vol. 63, no. 4, 1511–1528 (1998).

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kulpeshov B. Sh., “Countably categorical quite o-minimal theories,” J. Math. Sci., vol. 188, no. 4, 387–397 (2013).

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kulpeshov B. Sh., “Binary types in ℵ0-categorical weakly o-minimal theories,” Math. Logic Quart., vol. 57, no. 3, 246–255 (2011).

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to A. B. Altayeva or B. Sh. Kulpeshov.

Additional information

To Academician Yu. L. Ershov’s 80th jubilee.

The authors were partially supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant AP05132546).

Russian Text © The Author(s), 2020, published in Sibirskii Matematicheskii Zhurnal, 2020, Vol. 61, No. 3, pp. 484–498.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altayeva, A.B., Kulpeshov, B.S. Binarity of Almost ω-Categorical Quite o-Minimal Theories. Sib Math J 61, 379–390 (2020).

Download citation


  • almost ω-categoricity
  • weak o-minimality
  • quite o-minimality
  • binary theory