Siberian Mathematical Journal

, Volume 60, Issue 4, pp 734–740 | Cite as

Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators

  • M. P. ShushpanovEmail author


We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite.


distributive element right modular element finite lattice infinite lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ore O., “On the foundations of abstract algebra. I,” Ann. of Math., vol. 36, no. 2, 406–437 (1935).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gein A. G. and Shushpanov M. P., “Modularity and distributivity of 3-generated lattices with special elements among generators,” Algebra and Logic, vol. 56, no. 1, 1–12 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gein A. G. and Shushpanov M. P., “Lattices with defining relations close to distributivity,” Sib. Math. J., vol. 58, no. 6, 983–989 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grätzer G., General Lattice Theory, Birkhäuser-Verlag, Basel (1978).CrossRefzbMATHGoogle Scholar
  5. 5.
    Shushpanov M. P., “On the embedding of the free lattice of rank 3 in the lattice freely generated by three completely right modular elements,” Sib. Èlectron. Mat. Izv., vol. 14, 1215–1219 (2017).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations