Siberian Mathematical Journal

, Volume 60, Issue 4, pp 690–698 | Cite as

Characterization of the Orlicz Spaces Whose Convergence is Equivalent to Convergence in Measure on Reflexive Subspaces

  • S. I. Strakhov


We obtain the necessary and sufficient conditions for convergence in measure to be equivalent to norm convergence on the reflexive subspaces of Orlicz spaces.


rearrangement invariant space reflexive subspace Orlicz space Orlicz-Matuszewska indices convergence in measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zygmund A., Trigonometric Series. Vol. 1 [Russian translation], Mir, Moscow (1965).zbMATHGoogle Scholar
  2. 2.
    Albiac F. and Kalton N. J., Topics in Banach Space Theory, Springer-Verlag, New York (2006).zbMATHGoogle Scholar
  3. 3.
    Lavergne E., “Reflexive subspaces of some Orlicz spaces,” Colloq. Math., vol. 113, no. 2, 333–340 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alexopoulos J., “De la Vallée Poussin’s theorem and weakly compact sets in Orlicz spaces,” Quaest. Math., vol. 17, no. 2, 231–248 (1994).CrossRefzbMATHGoogle Scholar
  5. 5.
    Astashkin S. V., Kalton N. J., and Sukochev F. A., “Cesàro mean convergence of martingale differences in rearrangement invariant spaces,” Positivity, vol. 12, no. 3, 387–406 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Astashkin S. V. and Strakhov S. I., “On symmetric spaces with convergence in measure on reflexive subspaces,” Russian Math. (Iz. VUZ), vol. 62, no. 8, 1–8 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lindenstrauss J. and Tzafriri L., “On Orlicz sequence spaces. III,” Israel J. Math., vol. 14, no. 4, 368–389 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krein S. G., Petunin Yu. I., and Semenov E. M., Interpolation of Linear Operators, Amer. Math. Soc., Providence (1982).Google Scholar
  9. 9.
    Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin and New York (1979).CrossRefzbMATHGoogle Scholar
  10. 10.
    Krasnoselskii M. A. and Rutitskii Ya. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen (1961).Google Scholar
  11. 11.
    Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. I. Sequence Spaces, Springer-Verlag, Berlin and New York (1977).zbMATHGoogle Scholar
  12. 12.
    Kaminska A. and Raynaud Y., “Isomorphic l p-subspaces in Orlicz-Lorentz sequence spaces,” Proc. Amer. Math. Soc., vol. 134, no. 8, 2317–2327 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Maligranda L., Orlicz Spaces and Interpolation, Univ. Campinas, Campinas (1989).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. I. Strakhov
    • 1
  1. 1.S. P. Korolev Samara National Research UniversitySamaraRussia

Personalised recommendations