Siberian Mathematical Journal

, Volume 60, Issue 4, pp 673–684 | Cite as

On Double Wave Type Flows

  • L. I. RubinaEmail author
  • O. N. UlyanovEmail author


We study the potential double wave equation and the system of spatial double wave equations. In the class of solutions of multiple wave type, these equations are reduced to an ODE and the system of ODEs respectively. We find some exact solutions and obtain formulas for the contact lines of the corresponding double waves with a simple wave, show that in a neighborhood of an arbitrary point in the plane of self-similar variables there exists a special flow of potential double wave type, and construct a spatial double wave type flow around a specified smooth body.


nonlinear PDEs potential double waves spatial double waves method of characteristics exact solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sidorov A. F. and Yanenko N. N., “On the question about unsteady plane polytropic gas flows with rectangular characteristics,” Dokl. Akad. Nauk SSSR, vol. 123, no. 5, 832–834 (1958).Google Scholar
  2. 2.
    Ermolin E. V., Rubina L. I., and Sidorov A. F., “On the problem of two pistons,” J. Appl. Math. Mech., vol. 32, no. 5, 967–976 (1968).CrossRefGoogle Scholar
  3. 3.
    Rubina L. I. and Ulyanov O. N., “A geometric method for solving nonlinear partial differential equations,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 16, no. 2, 130–145 (2010).Google Scholar
  4. 4.
    Rubina L. I. and Ulyanov O. N., “Towards the differences in behavior of solutions of linear and nonlinear heat-conduction equations,” Vestnik Yuzhno-Uralsk. Gos. Univ. Ser. Mat., Mech., Fiz., vol. 5, no. 2, 52–59 (2013).Google Scholar
  5. 5.
    Rubina L. I. and Ulyanov O. N., “On solving certain nonlinear acoustics problems,” Acoust. Phys., vol. 61, no. 5, 527–533 (2015).CrossRefGoogle Scholar
  6. 6.
    Rubina L. I. and Ulyanov O. N., “On some method for solving a nonlinear heat equation,” Sib. Math. J., vol. 53, no. 5, 872–881 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sidorov A. F., “Two-dimensional processes of the unbounded unshocked compression of a gas,” J. Appl. Math. Mech., vol. 61, no. 5, 787–796 (1997).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sidorov A. F., “New regimes of the unbounded unshocked compression of a gas,” Dokl. Akad. Nauk, vol. 364, no. 2, 199–202 (1999).Google Scholar
  9. 9.
    Sidorov A. F., “Some three-dimensional gas flows adjacent to regions of rest,” Prikl. Mat. Mekh., vol. 32, no. 3, 369–380 (1968).zbMATHGoogle Scholar
  10. 10.
    Rubina L. I. and Ulyanov O. N., “One method for solving systems of nonlinear partial differential equations,” Proc. Steklov Inst. Math., vol. 288, no. suppl. 1, 180–188 (2015).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fushchich V. I., Zhdanov R. Z., and Revenko I. V., “General solutions of the nonlinear wave equation and of the eikonal equation,” Ukrainian Math. J., vol. 43, no. 11, 1364–1379 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Collins C. B., “Complex potential equations I. A technique for solution,” Math. Proc. Cambridge Philos. Soc., vol. 80, no. 2, 165–187 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cartan È., Exterior Differential Systems and Its Geometric Applications [Russian translation], Moscow Univ., Moscow (1962).Google Scholar
  14. 14.
    Sidorov A. R., Shapeev V. P., and Yanenko N. N., The Method of Differential Connections and Its Applications to Gas Dynamics [Russian], Nauka, Novosibirsk (1984).zbMATHGoogle Scholar
  15. 15.
    Ibragimov N. H., Meleshko S. V., and Rudenko O. V., “Group analysis of evolutionary integro-differential equations describing nonlinear waves: The general model,” J. Phys. A: Math. Theor., 2011. No. 44.315201.Google Scholar
  16. 16.
    Courant R., Partial Differential Equations, Interscience, New York (1962).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsEkaterinburgRussia
  2. 2.Krasovskii Institute of Mathematics and MechanicsUral Federal UniversityEkaterinburgRussia

Personalised recommendations