Siberian Mathematical Journal

, Volume 60, Issue 4, pp 605–612 | Cite as

Intersections of Three Nilpotent Subgroups of Finite Groups

  • V. I. ZenkovEmail author


Under study is the conjecture that for every three nilpotent subgroups A, B, and C of a finite group G there are elements x and y such that ABxCyF(G), where F(G) is the Fitting subgroup of G. We prove that a counterexample of minimal order to this conjecture is an almost simple group. The proof uses the classification of finite simple groups.


finite group nilpotent subgroup intersection of subgroups Fitting subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Passman D. S., “Groups with normal solvable Hall p-subgroups,” Trans. Amer. Math. Soc., vol. 123, no. 1, 99–111 (1966).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Zenkov V. I., “The structure of intersections of nilpotent π-subgroups in finite π-solvable groups,” Sib. Math. J., vol. 34, no. 4, 683–687 (1993).CrossRefzbMATHGoogle Scholar
  3. 3.
    Vdovin E. P., “Regular orbits in coprime actions of solvable linear p′-groups,” Sib. Èlektron. Mat. Izv., vol. 4, 345–360 (2007).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dolfi S., “Large orbits in coprime actions of solvable groups,” Trans. Amer. Math. Soc., vol. 360, no. 1, 135–152 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zenkov V. I., “On intersections of triples of nilpotent subgroups in finite solvable groups,” Sib. Èlektron. Mat. Izv., vol. 11, 207–209 (2014).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Mazurov V. D. and Khukhro E. I. (eds.), The Kourovka Notebook: Unsolved Problems in Group Theory, 17th ed., Sobolev Inst. Math., Novosibirsk (2010).zbMATHGoogle Scholar
  7. 7.
    Zenkov V. I., “On intersections of nilpotent subgroups in finite symmetric and alternating groups,” Proc. Steklov Inst. Math., vol. 285, no. suppl. 1, 203–208 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zenkov V. I., “Intersection of Abelian subgroups in finite groups,” Math. Notes, vol. 56, no. 2, 869–871 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zenkov V. I., “On intersections of Abelian and nilpotent subgroups in finite groups. II,” Math. Notes, vol. 105, no. 3–4, 366–375 (2019).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belyaev V. V. and Hartley B., “Centralizers of finite nilpotent subgroups in locally finite groups,” Algebra and Logic, vol. 35, no. 4, 217–228 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, Heidelberg, and Berlin (1979).CrossRefGoogle Scholar
  12. 12.
    Gorenstein D., Finite Simple Groups. An Introduction to Their Classification, Plenum, New York (1982).zbMATHGoogle Scholar
  13. 13.
    Zenkov V. I., “Intersections of nilpotent subgroups in finite groups,” Fundam. Prikl. Mat., vol. 2, no. 1, 1–92 (1996).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  15. 15.
    Gorenstein D., Lyons R., and Solomon R., The Classification of the Finite Simple Groups. Number 3, Amer. Math. Soc., Providence (1998).zbMATHGoogle Scholar
  16. 16.
    Gorenstein D. and Lyons R., The Local Structure of Finite Groups of Characteristic 2 Type, Amer. Math. Soc., Providence (1983) (Mem. Amer. Math. Soc.; V. 42, No. 276).CrossRefzbMATHGoogle Scholar
  17. 17.
    A. N. Kolmogorov and S. P. Novikov (eds.), To the Theory of Finite Groups [A Collection of Russian Translations], Mir, Moscow (1979).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Federal UniversityEkaterinburgRussia

Personalised recommendations