Siberian Mathematical Journal

, Volume 60, Issue 3, pp 464–471 | Cite as

Partial Decidable Presentations in Hyperarithmetic

  • I. Sh. KalimullinEmail author
  • V. G. PuzarenkoEmail author
  • M. Kh. FaizrahmanovEmail author


We study the problem of the existence of decidable and positive \(\Pi_1^1\)- and \(\Sigma_1^1\)-numberings of the families of \(\Pi_1^1\)- and \(\Sigma_1^1\)-cones with respect to inclusion. Some laws are found that reflect the presence of decidable computable \(\Pi_1^1\)- and \(\Sigma_1^1\)-numberings of these families in dependence on the analytical complexity of the set defining a cone.


numbering decidable numbering positive numbering computable numbering computable set computably enumerable set e-reducibility hyperarithmetic set constructible admissible set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalimullin I. Sh., Puzarenko V. G., and Faizrahmanov M. Kh., “Positive presentations of families relative to e-oracles,” Sib. Math. J., vol. 59, no. 4, 648–656 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Owings J. C., “The meta r.e. sets but not the Π1 1 sets can be enumerated without repetition,” J. Symb. Log., vol. 35, no. 2, 223–229 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dorzhieva M. V., “Elimination of metarecursive in Owings’ theorem,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., vol. 14, no. 1, 35–43 (2014).zbMATHGoogle Scholar
  4. 4.
    Dorzhieva M. V., “Undecidability of elementary theory of Rogers semilattices in analytical hierarchy,” Sib. Elektron. Mat. Izv., vol. 13, 148–153 (2016).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dorzhieva M. V., “A single-valued numbering for the family of all Σ2 1-sets,” Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., vol. 18, no. 2, 47–52 (2018).Google Scholar
  6. 6.
    Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Comp., New York, St. Louis, San Francisco, Toronto, London, and Sydney (1967).zbMATHGoogle Scholar
  7. 7.
    Soare R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, and Tokyo (1987).CrossRefzbMATHGoogle Scholar
  8. 8.
    Ershov Yu. L., The Theory of Enumerations [Russian], Nauka, Moscow (1977).Google Scholar
  9. 9.
    Ershov Yu. L., Definability and Computability, Consultants Bureau, New York and London (1996).zbMATHGoogle Scholar
  10. 10.
    Kalimullin I. Sh. and Puzarenko V. G., “Computable principles on admissible sets,” Siberian Adv. Math., vol. 15, no. 4, 1–33 (2005).MathSciNetGoogle Scholar
  11. 11.
    Barwise J., Admissible Sets and Structures, Springer-Verlag, Berlin, Heidelberg, and New York (1975).CrossRefzbMATHGoogle Scholar
  12. 12.
    Sacks G., Higher Recursion Theory, Springer-Verlag, Berlin, Göttingen, and Heidelberg (1990).CrossRefzbMATHGoogle Scholar
  13. 13.
    Puzarenko V. G., “Computability over models of decidable theories,” Algebra and Logic, vol. 39, no. 2, 98–113 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Puzarenko V. G., “Decidable computable A-numberings,” Algebra and Logic, vol. 41, no. 5, 314–322 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Owings J. C., “Recursion, metarecursion and inclusion,” J. Symb. Log., vol. 32, no. 2, 173–178 (1967).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia
  2. 2.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations