Advertisement

Siberian Mathematical Journal

, Volume 60, Issue 3, pp 450–463 | Cite as

To the Spectral Theory of Partially Ordered Sets

  • Yu. L. ErshovEmail author
  • M. V. SchwidefskyEmail author
Article
  • 14 Downloads

Abstract

We suggest an approach to advance the spectral theory of posets. The validity of the Hofmann-Mislove Theorem is established for posets and a characterization is obtained of the sober topological spaces as spectra of posets with topology. Also we describe the essential completions of topological spaces in terms of spectra of posets with topology. Apart from that, some sufficient conditions are found for two extensions of a topological space to be homeomorphic.

Keywords

poset ideal sober space spectrum essential completion Hofmann-Mislove theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stone M. H., “The theory for representations for Boolean algebras,” Trans. Amer. Math. Soc., vol. 40, 37–111 (1936).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Stone M. H., “Topological representations of distributive lattices and Brouwerian logics,” Casopis Pest. Mat., vol. 67, 1–25 (1937).zbMATHGoogle Scholar
  3. 3.
    Priestley H. A., “Representations of distributive lattices by means of ordered Stone spaces,” Bull. Lond. Math. Soc., vol. 2, 186–190 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Priestley H. A., “Ordered topological spaces and the representation of distributive lattices,” Proc. Lond. Math. Soc., vol. 24, no. 3, 507–530 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M. W., and Scott D. S., Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge (2003).CrossRefzbMATHGoogle Scholar
  6. 6.
    Grätzer G., General Lattice Theory, Akademie-Verlag, Berlin (1978).CrossRefzbMATHGoogle Scholar
  7. 7.
    Grätzer G., Lattice Theory: Foundation, Birkhäuser/Springer Basel AG, Basel (2011).CrossRefzbMATHGoogle Scholar
  8. 8.
    Ershov Yu. L., “The spectral theory of semitopological semilattices,” Sib. Math. J., vol. 44, no. 5, 797–806 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ershov Yu. L., “The spectral theory of semitopological semilattices. II,” Izv. Ural. Gos. Univ. Mat. Mekh., vol. 36, no. 7, 107–118 (2005).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ershov Yu. L., “Spectra of rings and lattices,” Sib. Math. J., vol. 46, no. 2, 283–292 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Batueva C. and Semenova M., “Ideals in distributive posets,” Cent. Eur. J. Math., vol. 9, no. 6, 1380–1388 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ershov Yu. L., “Essential extensions of T 0-spaces. II,” Algebra and Logic, vol. 55, no. 1, 1–8 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ershov Yu. L., “On essential extensions of T 0 -spaces,” Dokl. Math., vol. 368, no. 3, 188–191 (1999).Google Scholar
  14. 14.
    Ershov Yu. L., “Solimit points and u-extensions,” Algebra and Logic, vol. 56, no. 4, 295–301 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations