Advertisement

Siberian Mathematical Journal

, Volume 60, Issue 3, pp 398–404 | Cite as

The Structure of the Set of Local Minima of Functions in Various Spaces

  • A. V. ArutyunovEmail author
  • S. E. ZhukovskiyEmail author
  • K. V. StorozhukEmail author
Article
  • 18 Downloads

Abstract

We study the topological properties and cardinalities of the sets of strict local minima of functions on f-quasimetric and topological spaces.

Keywords

f-quasimetric space local minimum of a function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arutyunov A. V. and Greshnov A. V., “(q 1, q 2)-Quasimetric spaces. Covering mappings and coincidence points,” Izv. Math., vol. 82, no. 2, 245–272 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arutyunov A. V. and Zhukovskiy S. E., “Variational principles in nonlinear analysis and their generalization,” Math. Notes, vol. 103, no. 6, 1014–1019 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Behrends E., Geschke S., and Natkaniec T., “Functions for which all points are local extrema,” Real Anal. Exchange, vol. 33, no. 2, 467–470 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Balcerzak M., Popĺawski M., and Wydka J., “Local extrema and nonopenness points of continuous functions,” Amer. Math. Monthly, vol. 124, no. 5, 436–443 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arutyunov A. V., “Second-order conditions in extremal problems. The abnormal points,” Trans. Amer. Math. Soc., vol. 350, no. 11, 4341–4365 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arutyunov A. V. and Vinter R. B., “A simple ‘finite approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses,” Set-Valued Anal., vol. 12, 5–24 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arutyunov A. V., Greshnov A. V., Lokutsievskii L. V., and Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics,” Topology Appl., vol. 221, 178–194 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Stoltenberg R. A., “On quasi-metric spaces,” Duke Math. J., vol. 36, no. 1, 65–71 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Birkhoff G., “A note on topological groups,” Compositio Math., vol. 3, 427–430 (1936).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Frink A. H., “Distance functions and the metrization problem,” Bull. Amer. Math. Soc., vol. 43, 133–142 (1937).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Storozhuk K. V., “Strong extrema of functions on quasi-metric and compact spaces,” Topology Appl., vol. 250, 37–47 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kunzi H. P. A., “On strongly quasi-metrizable spaces,” Arch. Math., vol. 41, 57–63 (1983).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ribeiro H., “Sur les espaces ametrique faible,” Portugal. Math., vol. 4, no. 1, 21–40 (1943).zbMATHGoogle Scholar
  14. 14.
    Alexandroff P. S. and Urysohn P. S., Mémoire sur les Espaces Topologiques Compacts, Nauka, Moscow (1971).zbMATHGoogle Scholar
  15. 15.
    Engelking R., General Topology, Heldermann Verlag, Berlin (1989).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission Problems Trapeznikov Institute of Control SciencesPeoples’ Friendship University of RussiaMoscowRussia
  2. 2.Trapeznikov Institute of Control SciencesPeoples’ Friendship University of Russia, Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations