Skip to main content
Log in

The 2-Closure of a \({\textstyle{3 \over 2}}\)-Transitive Group in Polynomial Time

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let G be a permutation group on a finite set Ω. The k-closure G(k) of G is the largest subgroup of the symmetric group Sym(Ω) having the same orbits with G on the kth Cartesian power Ωk of Ω. The group G is called \({\textstyle{3 \over 2}}\)-transitive, if G is transitive and the orbits of a point stabilizer Gα on Ω{α} are of the same size greater than 1. We prove that the 2-closure G(2) of a \({\textstyle{3 \over 2}}\)-transitive permutation group G can be found in polynomial time in size of Ω. Moreover, if the group G is not 2-transitive, then for every positive integer k its k-closure can be found within the same time. Applying the result, we prove the existence of a polynomial-time algorithm for solving the isomorphism problem for schurian \({\textstyle{3 \over 2}}\)-homogeneous coherent configurations, that is coherent configurations naturally associated with \({\textstyle{3 \over 2}}\)-transitive groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delsarte Ph., An Algebraic Approach to the Association Schemes of Coding Theory, Philips Research Reports Suppl., No. 10, Eindhoven (1973).

    MATH  Google Scholar 

  2. Brouwer A. E, Cohen A. M., and Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin and Heidelberg (1989).

    Book  MATH  Google Scholar 

  3. Bagherian J., Ponomarenko I., and Rahnamai Barghi A., “On cyclotomic schemes over finite near-fields,” J. Algebr. Comb., vol. 27, 173–185 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. Churikov D. V and Vasil’ev A. V., “Automorphism groups of cyclotomic schemes over finite near-fields,” Sib. Electron. Math. Reports, vol. 13, 1271–1282 (2016).

    MathSciNet  MATH  Google Scholar 

  5. Wielandt H., Finite Permutation Groups, Acad. Press, New York (1964).

    MATH  Google Scholar 

  6. Passman D. S., “Solvable half-transitive automorphism groups,” J. Algebra, vol. 6, 285–304 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  7. Passman D. S., “Solvable \({\textstyle{3 \over 2}}\)-transitive groups,” J. Algebra, vol. 7, 192–207 (1967).

    Article  MathSciNet  Google Scholar 

  8. Passman D. S., “Exceptional \({\textstyle{3 \over 2}}\)-transitive permutation groups,” Pacific J. Math., vol. 29, 669–713 (1969).

    Article  MathSciNet  Google Scholar 

  9. Bamberg J., Giudici M., Liebeck M. W., Praeger C. E., and Saxl J., “The classification of almost simple \({\textstyle{3 \over 2}}\)-transitive groups,” Trans. Amer. Math. Soc., vol. 365, 4257–4311 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. Giudici M., Liebeck M. W., Praeger C. E., Saxl J., and Tiep P. H., “Arithmetic results on orbits of linear groups,” Trans. Amer. Math. Soc., vol. 368, 2415–2467 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. Liebeck M. W, Praeger C. E., and Saxl J., “The classification of \({\textstyle{3 \over 2}}\)-transitive permutation groups and \({\textstyle{1 \over 2}}\)-transitive linear groups,” arXiv:1412.3912.

  12. Wielandt H., Permutation Groups Through Invariant Relations and Invariant Functions, Ohio St. Univ., Columbus (1969) (Lect. Notes Dept. Math.).

    Google Scholar 

  13. Faradzev I. A, Ivanov A. A., Klin M., and Woldar A. J., Investigations in Algebraic Theory of Combinatorial Objects, Kluwer Acad. Publ., Dordrecht (1994).

    Book  MATH  Google Scholar 

  14. Evdokimov S. and Ponomarenko I., “Permutation group approach to association schemes,” European J. Comb., vol. 30, no. 6, 1456–1476 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Babai L., “Groups, graphs, algorithms: The graph isomorphism problem,” in: Proc. ICM 2018, Rio de Janeiro, V. 3, 3303–3320 (see also L. Babai, “Graph isomorphism in quasipolynomial time” (2015), arXiv:1512.03547).

  16. Ponomarenko I. N., “Graph isomorphism problem and 2-closed permutation groups,” Appl. Algebra Eng. Comm. Comput., vol. 5, no. 1, 9–22 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  17. Evdokimov S. and Ponomarenko I., “Two-closure of odd permutation group in polynomial time,” Discrete Math., vol. 235, no. 1–3, 221–232 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. Seress A., Permutation Group Algorithms, Camb. Univ. Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  19. Liebeck M. W, Praeger C. E., and Saxl J., “On the 2-closures of finite permutation groups,” J. Lond. Math. Soc., vol. 37, no. 2, 241–252 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. Praeger C. E and Saxl J., “Closures of finite primitive permutation groups,” Bull. Lond. Math. Soc., vol. 24, no. 3, 251–258 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. Palfy P. P., “A polynomial bound for the orders of primitive solvable groups,” J. Algebra, vol. 77, no. 1, 127–137 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lucchini A. and Menegazzo F., “Generators for finite groups with a unique minimal normal subgroup,” Rend. Semin. Mat. Univ. Padova, vol. 98, 173–191 (1997).

    MathSciNet  MATH  Google Scholar 

  23. Passman D. S, Permutation Groups, W. A. Benjamin Inc., New York (1968).

    MATH  Google Scholar 

  24. Evdokimov S. A. and Ponomarenko I. N., “On primitive cellular algebras,” J. Math. Sci. (N. Y.), vol. 107, no. 5, 4172–4191 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. Weisfeiler B. Yu. and Leman A. A., “The reduction of a graph to the canonical form and the algebra which appears therein” (Russian), NTI. Ser 2. Inform. Analysis, no. 9, 12–16 (1968).

  26. Weisfeiler B. (ed.), On Construction and Identification of Graphs, Springer-Verlag, Berlin and Heidelberg (1976).

    MATH  Google Scholar 

  27. Ponomarenko I. N., “Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments,” J. Math. Sci. (N. Y.), vol. 192, no. 3, 316–338 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Vasil’ev or D. V. Churikov.

Additional information

The authors were supported by the Russian Foundation for Basic Research (Grant 18-01-00752).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.V., Churikov, D.V. The 2-Closure of a \({\textstyle{3 \over 2}}\)-Transitive Group in Polynomial Time. Sib Math J 60, 279–290 (2019). https://doi.org/10.1134/S0037446619020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446619020083

Keywords

Navigation