Skip to main content
Log in

On Some Inverse Problems for First Order Operator-Differential Equations

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study solvability of the inverse problems of recovering an unknown function on the nonlinear right-hand side of a first order operator-differential equation in some Banach space. The equation is furnished with the Cauchy data, and the overdetermination condition is the value of some operator at a solution. The existence and uniqueness theorems local in time are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozisik M. N. and Orlando H. A. B., Inverse Heat Transfer, Taylor & Francis, New York (2000).

    Google Scholar 

  2. Alifanov O. M., Artyukhin E. A., and Nenarokomov A. V., Inverse Problems in Complex Heat Transfer [Russian], Yanus–K, Moscow (2009).

    MATH  Google Scholar 

  3. Alifanov O. M., Inverse Heat Transfer Problems, Springer–Verlag, Berlin and Heidelberg (1994).

    Book  MATH  Google Scholar 

  4. Marchuk G. I., Mathematical Models in Environmental Problems, Elsevier Sci. Publ., Amsterdam (1986). vol. 16.

    MATH  Google Scholar 

  5. Mamonov A. V. and Tsai Y–H. R., “Point source identification in nonlinear advection–diffusion–reaction systems,” Inverse Probl., vol. 29, no. 3 (035009) (2013).

    Google Scholar 

  6. Boano F., Revelli R., and Ridolfi L., “Source identification in river pollution problems: a geostatistical approach,” Water Resources Res., vol. 41, W07023 (2005).

    Google Scholar 

  7. Hamdi A., “Identification of point sources in two–dimensional advection–diffusion–reaction equation: application to pollution sources in a river. Stationary case,” Inverse Probl. Sci. Eng., vol. 15, No. 8, 855–870 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. Badia A. El and Hamdi A., “Inverse source problem in an advection–dispersion–reaction system: application to water pollution,” Inverse Probl., vol. 23, No. 5, 2103–2120 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. Badia A. El and Ha–Duong T., “Inverse source problem for the heat equation. Application to a pollution detection problem,” J. Inverse Ill–Posed Probl., vol. 10, No. 6, 585–599 (2002).

    MathSciNet  MATH  Google Scholar 

  10. Pyatkov S. G. and Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations,” Siberian Adv. Math., vol. 22, No. 4, 287–302 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York (1999).

    MATH  Google Scholar 

  12. Balachandran K. and Dauer J. P., “Controllability of nonlinear systems in Banach spaces: a survey,” J. Optimization Theory Appl., vol. 115, No. 1, 7–28 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. Engel K.–J., Klöss B., Nagel R., Fijavž B., and Sikolya E., “Maximal controllability for boundary control problems,” Appl. Math. Optim., vol. 62, No. 2, 205–227 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. Engel K.–J. and Fijavž B., “Exact and positive controllability of boundary control systems,” Netw. Heterog. Media, vol. 12, No. 2, 319–337 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. Tikhonov I. V. and Eidelman Yu. S., “Uniqueness criterion in an inverse problem for an abstract differential equation with nonstationary inhomogeneous term,” Math. Notes, vol. 77, No. 1–2, 246–262 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. Pyatkov S. G. and Safonov E. I., “On some classes of linear inverse problems for parabolic systems of equations,” Sib. Èlektron. Mat. Izv., vol. 11, 777–799 (2014).

    MathSciNet  MATH  Google Scholar 

  17. Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser–Verlag, Basel (1995).

    Book  MATH  Google Scholar 

  18. Grisvard P., “Equations differentielles abstraites,” Ann. Sci. Éc. Norm. Supér., IV. Sér., vol. 2, No. 3, 311–395 (1969).

    MATH  Google Scholar 

  19. Triebel H., Theory of Function Spaces. II, Birkhäuser–Verlag, Basel (1992).

    Book  MATH  Google Scholar 

  20. Denk R. and Krainer T., “R–Boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators,” Manuscripta Math., vol. 124, No. 3, 319–342 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunstmann P. C. and Weis L., “Maximal L p regularity for parabolic equations, Fourier multiplier theorems and H functional calculus,” in: Proc. Autumn School on Evolution Equations and Semigroups (M. Iannelli, R. Nagel, S. Piazzera, eds.), Springer–Verlag, Heidelberg, 2004, vol. 69, 65–320.

    Google Scholar 

  22. Denk R., Hieber M., and Prüss J., “R–boundedness, Fourier multipliers and problems of elliptic and parabolic type,” Mem. Amer. Math. Soc., vol. 166, No. 788, 1–130 (2003).

    MathSciNet  MATH  Google Scholar 

  23. Denk R., Hieber M., and Prüss J., “Optimal L pL q–estimates for parabolic boundary value problems with inhomogeneous data,” Math. Z., vol. 257, No. 1, 93–224 (2007).

    Article  MATH  Google Scholar 

  24. Pruss J. and Simonett G., “Maximal regularity for evolution equations in weighted L p–spaces,” Arch. Math., vol. 82, No. 5, 415–431 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  25. Amann H., “Maximal regularity for nonautonomous evolution equations,” Adv. Nonlinear Stud., vol. 4, No. 4, 417–430 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. Pyatkov S. G., “Solvability of initial–boundary value problems for non–autonomous evolution equations,” arXiv.org e–Print archive. arXiv:1806.02361. 6 Jun 2018.

    Google Scholar 

  27. Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North–Holland Publ., Amsterdam (1978).

    MATH  Google Scholar 

  28. Yagi A., Abstract Parabolic Evolution Equations and Their Applications, Springer–Verlag, Berlin and Heidelberg (2010).

    Book  MATH  Google Scholar 

  29. Amann H., Linear and Quasilinear Parabolic Problems. Vol. 1, Birkhäuser–Verlag, Basel, Boston, and Berlin (1995).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Pyatkov.

Additional information

The author was supported by the Russian Foundation for Basic Research (Grant 18-01-00620a).

__________

Translated from Sibirskii Matematicheskii Zhurnal, vol. 60, no. 1, pp. 183–193, January–February, 20192019; DOI: 10.17377/smzh.2019.60.115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyatkov, S.G. On Some Inverse Problems for First Order Operator-Differential Equations. Sib Math J 60, 140–147 (2019). https://doi.org/10.1134/S0037446619010154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446619010154

Keywords

Navigation