Skip to main content
Log in

Recovering Linear Operators and Lagrange Function Minimality Condition

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

This article concerns the recovery of the operators by noisy information in the case that their norms are defined by integrals over infinite intervals. We study the conditions under which the dual extremal problem (often nonconvex) can be solved using the Lagrange function minimality condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smolyak S. A., On Optimal Recovery of Functions and Functionals over Them [Russian], Diss. Kand. Fiz.-Mat. Nauk, Moscow Univ., Moscow (1965).

    Google Scholar 

  2. Marchuk A. G. and Osipenko K. Yu., “Best approximation of functions specified with an error at a finite number of points,” Math. Notes, vol. 17, no. 3, 207–212 (1975).

    Article  MATH  Google Scholar 

  3. Osipenko K. Yu., “Best approximation of analytic functions from information about their values at a finite number of points,” Math. Notes, vol. 19, no. 1, 17–23 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  4. Micchelli C. A. and Rivlin T. J., “A survey of optimal recovery,” in: Optimal Estimation in Approximation Theory (C. A. Micchelli and T. J. Rivlin; eds.), Plenum Press, New York, 1977, 1–54.

    Chapter  Google Scholar 

  5. Arestov V. V., “Optimal recovery of operators, and related problems,” Trudy Mat. Inst. Steklov., vol. 189, 3–20 (1989).

    MathSciNet  Google Scholar 

  6. Traub J. F. and Woźniakowski H., A General Theory of Optimal Algorithms, Academic Press, New York (1980).

    MATH  Google Scholar 

  7. Plaskota L., Noisy Information and Computational Complexity, Cambridge Univ. Press, Cambridge (1996).

    Book  MATH  Google Scholar 

  8. Osipenko K. Yu., Optimal Recovery of Analytic Functions, Nova Sci. Publ., Inc., Huntington and New York (2000).

    Google Scholar 

  9. Melkman A. A. and Micchelli C. A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data,” SIAM J. Numer. Anal., vol. 16, 87–105 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  10. Magaril-Il’yaev G. G. and Osipenko K. Yu., “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error,” Sb. Math., vol. 193, no. 3, 387–407 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. Osipenko K. Yu., “The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces,” Sb. Math., vol. 197, no. 3, 315–334 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. Magaril-Il’yaev G. G. and Osipenko K. Yu., “Optimal recovery of the solution of the heat equation from inaccurate data,” Sb. Math., vol. 200, no. 5, 665–682 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. Arutyunov A. V., “Milyutin’s theorem in linear-quadratic optimal control problems,” Differ. Equ., vol. 37, no. 11, 1627–1630 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. Arutyunov A. V., “Lagrange principle in quadratic optimal control problems with infinite horizon,” Differ. Equ., vol. 45, no. 11, 1595–1601 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. Ioffe A. D. and Tikhomirov V. M., “Some remarks on variational principles,” Math. Notes, vol. 61, no. 2, 248–253 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. Bobylev N. A., Emel’yanov S. V., and Korovin S. K., Geometric Methods in Variational Problems [Russian], Magistr, Moscow (1998).

    MATH  Google Scholar 

  17. Arutyunov A. V., “Smooth abnormal problems in extremum theory and analysis,” Russian Math. Surveys, vol. 67, no. 3 (405), 403–457 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. Arutyunov A. V., “Approximation to solutions of linear control systems by compactly supported solutions,” Differ. Equ., vol. 51, no. 6, 792–797 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. Yosida K., Functional Analysis, Springer-Verlag, Berlin (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Arutyunov.

Additional information

Original Russian Text Copyright © 2018 Arutyunov A.V. and Osipenko K.Yu.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 59, No. 1, pp. 15–28, January–February, 2018; DOI: 10.17377/smzh.2018.59.102

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, A.V., Osipenko, K.Y. Recovering Linear Operators and Lagrange Function Minimality Condition. Sib Math J 59, 11–21 (2018). https://doi.org/10.1134/S0037446618010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446618010020

Keywords

Navigation