Siberian Mathematical Journal

, Volume 58, Issue 6, pp 1015–1033 | Cite as

Negative Dense Linear Orders

Article
  • 1 Downloads

Abstract

Considering dense linear orders, we establish their negative representability over every infinite negative equivalence, as well as uniformly computable separability by computable gaps and the productivity of the set of computable sections of their negative representations. We construct an infinite decreasing chain of negative representability degrees of linear orders and prove the computability of locally computable enumerations of the field of rational numbers.

Keywords

enumerated systems and morphisms negative and positive linear orders computable sequences and sections productivity of computable sections computable completion negative representation of the field of rational numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ershov Yu. L., The Theory of Enumerations [Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    Ershov Yu. L., Decidability Problems and Constructive Models [Russian], Nauka, Moscow (1980).Google Scholar
  3. 3.
    Goncharov S. S. and Ershov Yu. L., Constructive Models (ser. Siberian School of Algebra and Logic), Kluwer Academic/Plenum Publishers, New York, etc. (2000).Google Scholar
  4. 4.
    Mal’tsev A. I., “To the general theory of algebraic systems,” Mat. Sb., vol. 35, no. 1, 3–20 (1954).MathSciNetMATHGoogle Scholar
  5. 5.
    Mal’tsev A. I., “Constructive algebras. I,” Russian Math. Surveys, vol. 16, no. 3, 77–129 (1961).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Mal’tsev A. I., “Positive and negative numerations,” Dokl. Akad. Nauk SSSR, vol. 160, no. 2, 278–280 (1965).MathSciNetMATHGoogle Scholar
  7. 7.
    Martin-Löf P., Essays on Constructive Mathematics [Russian translation], Mir, Moscow (1975).MATHGoogle Scholar
  8. 8.
    Feiner L., “Hierarchies of Boolean algebras,” J. Symb. Log., vol. 35, no. 2, 365–373 (1970).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Morozov A. S. and Truss J. K., “On computable automorphisms of the rational numbers,” J. Symb. Log., vol. 66, no. 3, 1458–1470 (2001).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fokina E. B., Khoussainov B., Semukhin P., and Turetsky D., “Linear orders realized by C. E. Equivalence relations,” J. Symb. Log., vol. 81, no. 2, 463–482 (2016).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kasymov N. Kh., “Algebras over negative equivalences,” Algebra and Logic, vol. 33, no. 1, 46–48 (1994).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kasymov N. Kh., “Recursively separable enumerated algebras,” Russian Math. Surveys, vol. 51, no. 3, 509–538 (1996).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kasymov N. Kh. and Ibragimov F. N., “Structure characterization of recursive-separable models,” Dokl. AN RUz, no. 11, 14–16 (1998).MATHGoogle Scholar
  14. 14.
    Kasymov N. Kh., “Homomorphisms onto effectively separable algebras,” Sib. Math. J., vol. 57, no. 1, 36–50 (2016).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kasymov N. Kh. and Morozov A. S., “Definability of linear orders over negative equivalences,” Algebra and Logic, vol. 55, no. 1, 24–37 (2016).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Khoussainov B., Slaman T., and Semukhin P., “Π01-Presentations of algebras,” Arch. Math. Logic, vol. 45, no. 6, 769–781 (2006).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Uzbekistan National UniversityTashkentUzbekistan

Personalised recommendations