Advertisement

Siberian Mathematical Journal

, Volume 58, Issue 6, pp 971–982 | Cite as

On 2-Closedness of the Rational Numbers in Quasivarieties of Nilpotent Groups

  • A. I. Budkin
Article

Abstract

The dominion of a subgroup H of a group G in a class M is the set of all elements aG that have equal images under every pair of homomorphisms from G to a group of M coinciding on H. A group H is said to be n-closed in M if for every group G = gr(H, a1,..., a n ) of M that contains H and is generated modulo H by some n elements, the dominion of H in G (in M) is equal to H. We prove that the additive group of the rational numbers is 2-closed in every quasivariety M of torsion-free nilpotent groups of class at most 3 whenever every 2-generated group of M is relatively free.

Keywords

quasivariety nilpotent group additive group of the rational numbers dominion 2-closed group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Budkin A. I., “Lattices of dominions of universal algebras,” Algebra and Logic, vol. 46, no. 1, 16–27 (2007).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Budkin A. I., “Dominions in quasivarieties of universal algebras,” Studia Logica, vol. 78, no. 1/2, 107–127 (2004).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Shakhova S. A., “Lattices of dominions in quasivarieties of abelian groups,” Algebra and Logic, vol. 44, no. 2, 132–139 (2005).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Shakhova S. A., “Distributivity conditions for lattices of dominions in quasivarieties of Abelian groups,” Algebra and Logic, vol. 45, no. 4, 277–285 (2006).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Shakhova S. A., “A property of the intersection operation in lattices of dominions in quasivarieties of Abelian groups,” Izv. Altai Gos. Univ., vol. 65, no. 1, 41–43 (2010).Google Scholar
  6. 6.
    Shakhova S. A., “The existence of a dominion lattice in quasivarieties of Abelian groups,” Izv. Altai Gos. Univ., vol. 69, no. 1, 31–33 (2011).Google Scholar
  7. 7.
    Budkin A. I., “Dominions of universal algebras and projective properties,” Algebra and Logic, vol. 47, no. 5, 304–313 (2008).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Magidin A., “Dominions in varieties of nilpotent groups,” Comm. Algebra, vol. 28, 1241–1270 (2000).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Shakhova S. A., “Absolutely closed groups in the class of 2-step nilpotent torsion-free groups,” Math. Notes, vol. 97, no. 6, 946–950 (2015).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Budkin A. I., “Dominions in quasivarieties of metabelian groups,” Sib. Math. J., vol. 51, no. 3, 396–401 (2010).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Budkin A. I., “The dominion of a divisible subgroup of a metabelian group,” Izv. Altai Gos. Univ., vol. 65, no. 2, 15–19 (2010).Google Scholar
  12. 12.
    Budkin A. I., “Dominions in Abelian subgroups of metabelian groups,” Algebra and Logic, vol. 51, no. 5, 404–414 (2012).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Budkin A. I., “Absolute closedness of torsion-free Abelian groups in the class of metabelian groups,” Algebra and Logic, vol. 53, no. 1, 9–16 (2014).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Budkin A. I., “On the closedness of a locally cyclic subgroup in a metabelian group,” Sib. Math. J., vol. 55, no. 6, 1009–1016 (2014).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Budkin A. I., “Dominions in solvable groups,” Algebra and Logic, vol. 54, no. 5, 370–379 (2015).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, Heidelberg, and Berlin (1979).CrossRefMATHGoogle Scholar
  17. 17.
    Magnus W., Karrass A., and Solitar D., Combinatorial Group Theory, Dover Publications, Mineola (2004).MATHGoogle Scholar
  18. 18.
    Budkin A. I., Quasivarieties of Groups [Russian], Izdat. Altai Univ., Barnaul (2002).MATHGoogle Scholar
  19. 19.
    Gorbunov V. A., Algebraic Theory of Quasivarieties, Plenum, New York (1998).MATHGoogle Scholar
  20. 20.
    Fedorov A. N., “Quasi-identities of a free 2-nilpotent group,” Math. Notes, vol. 40, no. 5, 837–841 (1986).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Budkin A. I., “On quasivarieties of axiomatic rank 3 of torsion-free nilpotent groups,” Sib. Math. J., vol. 58, no. 1, 43–48 (2017).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Altai State UniversityBarnaulRussia

Personalised recommendations