Siberian Mathematical Journal

, Volume 58, Issue 6, pp 952–958 | Cite as

On Subspaces of Cesàro Spaces

Article
  • 6 Downloads

Abstract

We obtain a characterization of subspaces of L p , with 1 < p < ∞, on which the L p -norm is equivalent to the norm of the Cesàro space Ces p . Also, we show that Ces p has a complemented copy of the Cesàro sequence space ces p .

Keywords

Lp-space Cesàro space Λ(p)-space isomorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mastyło M., “Banach spaces via sublinear operators,” Math. Japon., vol. 36, no. 1, 85–92 (1991).MathSciNetMATHGoogle Scholar
  2. 2.
    Astashkin S. V., “Geometrical properties of Banach spaces generated by sublinear operators,” Positivity, vol. 17, no. 2, 223–234 (2012).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Jagers A. A., “A note on Cesàro sequence spaces,” Nieuw Arch. Wiskd., vol. 22, 113–124 (1974).MATHGoogle Scholar
  4. 4.
    Astashkin S. V. and Maligranda L., “Cesàro function spaces fail the fixed point property,” Proc. Amer. Math. Soc., vol. 136, no. 12, 4289–4294 (2008).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hardy G. H., Littlewood J. E., and Pólya G., Inequalities, Cambridge University Press, Cambridge, etc. (1988).MATHGoogle Scholar
  6. 6.
    Khintchine A., “Über dyadische Brüche,” Math. Z., Bd 18, 109–116 (1923).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Astashkin S. V. and Maligranda L., “Rademacher functions in Cesàro type spaces,” Studia Math., vol. 198, no. 3, 235–247 (2010).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Blei R., Analysis in Integer and Fractional Dimensions, Cambridge Univ. Press, Cambridge (2001) (Camb. Stud. Adv. Math.; vol. 71).CrossRefMATHGoogle Scholar
  9. 9.
    Albiac F. and Kalton N. J., Topics in Banach Space Theory, Springer-Verlag, New York (2006) (Grad. Texts Math.; vol. 233).MATHGoogle Scholar
  10. 10.
    Kantorovich L. V. and Akilov G. P., Functional Analysis in Normed Spaces, Pergamon Press, Oxford, London, New York, Paris, and Frankfurt (1964).MATHGoogle Scholar
  11. 11.
    Astashkin S. V. and Maligranda L., “Structure of Cesàro function spaces,” Indag. Math. (N.S.), vol. 20, no. 3, 329–379 (2009).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Astashkin S. V., “On the geometric properties of Cesàro spaces,” Sb. Math., vol. 203, no. 4, 514–533 (2012).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hernandez F. L., “Lattice structures in Orlicz spaces,” Banach Center Publ., vol. 64, 71–84 (2004).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kadec M. I. and Pełczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces L p,” Studia Math., vol. 21, 161–176 (1962).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bennett G., Factorizing the Classical Inequalities, Amer. Math. Soc., Providence (1996) (Mem. Amer. Math. Soc.; vol. 120).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Samara National Research UniversitySamaraRussia

Personalised recommendations