Advertisement

Siberian Mathematical Journal

, Volume 58, Issue 6, pp 923–931 | Cite as

On the Normal Jacobi Operator of CR-Hypersurfaces in Conformal Kenmotsu Space Forms

  • R. Abdi
  • E. Abedi
Article
  • 19 Downloads

Abstract

We study the CR-hypersurfaces of a conformal Kenmotsu space form with a ξ-parallel normal Jacobi operator. We also present an illustrative example of a three-dimensional conformal Kenmotsu manifold that is not Kenmotsu.

Keywords

Kenmotsu manifold conformal Kenmotsu manifold conformal Kenmotsu space form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dragomir S. and Ornea L., Locally Conformal Kähler Geometry, Birkhäuser, Boston (1998) (Progr. Math.; vol. 175).CrossRefMATHGoogle Scholar
  2. 2.
    Libermann P., “Sur les structures presque complexes et autres structures infinitésimales régulières,” Bull. Soc. Math. France, vol. 83, 195–224 (1955).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Vaisman Izu, “A geometric condition for an l.c.K. manifold to be Kähler,” Geom. Dedicata, vol. 10, 129–134 (1981).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tricerri F., “Some examples of locally conformal Kähler manifolds,” Rend. Sem. Mat. Tôrino, vol. 40, 81–92 (1982).MathSciNetMATHGoogle Scholar
  5. 5.
    Banaru M., “A new characterization of the Gray–Hervella classes of almost Hermitian manifolds,” in: 8th International Conference on Differential Geometry and Its Applications, Opava, Czech Republic, 2001, 27–31.Google Scholar
  6. 6.
    Abood H. M., Holomorphic-Geodesic Transformations of Almost Hermitian Manifold, Ph. D. Thesis, Moscow State Pedagogical University, Moscow (2002).MATHGoogle Scholar
  7. 7.
    Gray A. and Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann. Mat. Pura Appl., vol. 123, no. 4, 35–58 (1980).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hernández-Lamoneda L., “Curvature vs. almost Hermitian structures,” Geom. Dedicata, vol. 79, no. 2, 205–218 (2000).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bonanzinga V. and Matsumoto K., “Warped product of CR-submanifolds in locally conformal Kaehler manifolds,” Period. Math. Hung., vol. 48, no. 1–2, 207–221 (2004).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kamishima Y. and Ornea L., “Geometric flow on compact locally conformally Kähler manifolds,” Tôhoku Math. J., vol. 57, 201–221 (2005).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Papaghiuc N., “Some remarks on CR-submanifolds of a locally conformal Kähler manifold with parallel Lee form,” Publ. Math. Debrecen, vol. 43, no. 3–4, 337–341 (1993).MathSciNetMATHGoogle Scholar
  12. 12.
    Kenmotsu K., “A class of almost contact Riemannian manifolds,” Tôhoku Math. J., vol. 24, 93–103 (1972).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Blair D. E., Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, Basel, and Berlin (2002).CrossRefMATHGoogle Scholar
  14. 14.
    Blair D. E., Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin, Heidelberg, and New York (1976) (Lect. Notes Math.; vol. 509).CrossRefMATHGoogle Scholar
  15. 15.
    Abdi R. and Abedi E., “Invariant and anti-invariant submanifolds of a conformal Kenmotsu manifold,” Azerbaijan J. Math., vol. 5, no. 1, 54–63 (2017).MathSciNetMATHGoogle Scholar
  16. 16.
    Abdi R. and Abedi E., “CR-Hypersurfaces of a conformal Kenmotsu manifold satisfying certain shape operator conditions,” Period. Math. Hung., vol. 73, no. 1, 83–92 (2016).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shukla S. S. and Shukla M. K., “On φ-Ricci symmetric Kenmotsu manifolds,” Novi Sad. J. Math., vol. 2, 89–95 (2008).MathSciNetMATHGoogle Scholar
  18. 18.
    Bejancu A., Geometry of CR-Submanifolds, D. Reidel Publ. Co., Dordrecht (1986).CrossRefMATHGoogle Scholar
  19. 19.
    Berndt J., “Real hypersurfaces in quaternionic space forms,” Z. Reine Angew. Math., vol. 419, 9–26 (1991).MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsAzerbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations