Skip to main content
Log in

Some notes on the rank of a finite soluble group

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Let G be a finite group and let σ = {σ i|iI} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A 1 × ⋯ × A r , where A i is a \({\sigma _{{i_j}}}\)-group for some i j = i j (A i ). A collection of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of is a Hall σ i -subgroup of G for some iI and has exactly one Hall σ i -subgroup of G for every i such that σ i π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set such that AH x = H x A for all H and xG. The symbol r(G) (r p (G)) denotes the rank (p-rank) of G.

Assume that is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and r p (G) ≤ n + r p (H) − 1 for all H and odd pπ(H).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skiba A. N., “On σ-subnormal and σ-permutable subgroups of finite groups,” J. Algebra, vol. 436, 1–16 (2015).

    Article  MathSciNet  Google Scholar 

  2. Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin (1967).

    Book  MATH  Google Scholar 

  3. Huppert B., “Normalteiler und maximale Untergruppen endlicher Gruppen,” Math. Z., Bd 60, 409–434 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  4. Agrawal R. K., “Generalized center and hypercenter of a finite group,” Proc. Amer. Math. Soc., vol. 54, 13–21 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  5. Weinstein M. et al. (eds.), Between Nilpotent and Solvable, Polygonal Publ. House, Passaic (1982).

    Google Scholar 

  6. Ballester-Bolinches A., Esteban-Romero R., and Asaad M., Products of Finite Groups, Walter de Gruyter, Berlin and New York (2010).

    Book  MATH  Google Scholar 

  7. Guo W., Structure Theory for Canonical Classes of Finite Groups, Walter de Gruyter, Berlin, Heidelberg, Dordrecht, and New York (2015).

    Book  MATH  Google Scholar 

  8. Janko Z., “Finite groups with invariant fourth maximal subgroups,” Math. Z., Bd 83, 82–89 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  9. Mann A., “Finite groups whose n-maximal subgroups are subnormal,” Trans Amer. Math. Soc., vol. 132, 395–409 (1968).

    MATH  MathSciNet  Google Scholar 

  10. Skiba A. N., “On some results in the theory of finite partially soluble groups,” Commun. Math. Stat., vol. 4, 281–312 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  11. Buckley J., “Finite groups whose minimal subgroups are normal,” Math. Z., Bd 116, 15–17 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  12. Baer R., “Nilpotent characteristic subgroups of finite groups,” J. Math., vol. 75, 633–664 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  13. Skiba A. N., “A generalization of a Hall theorem,” J. Algebra Appl., vol. 15, no. 4, 21–36 (2015).

    MathSciNet  Google Scholar 

  14. Gorenstein D., Finite Groups, Harper & Row Publ., New York, Evanston, and London (1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Additional information

Original Russian Text Copyright © 2017 Zhang L., Guo W., and Skiba A.N.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 58, No. 5, pp. 1181–1190, September–October, 2017; DOI: 10.17377/smzh.2017.58.519.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Guo, W. & Skiba, A.N. Some notes on the rank of a finite soluble group. Sib Math J 58, 915–922 (2017). https://doi.org/10.1134/S0037446617050196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446617050196

Keywords

Navigation