Skip to main content
Log in

Weak solvability of the generalized Voigt viscoelasticity model

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We establish the existence and uniqueness of a weak solution to an initial boundary value problem for the system of the motion equations of a fluid that is a fractional analog of the Voigt viscoelasticity model. The rheological equation of the model contains fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gyarmati I., Non-Equilibrium Thermodynamics: Field Theory and Variational Principles, Springer-Verlag, Berlin and Heidelberg (1970).

    Book  Google Scholar 

  2. Zvyagin V. G., “On solvability of some initial-boundary problems for mathematical models of the motion of nonlinearly viscous and viscoelastic fluids,” J. Math. Sci., vol. 124, no. 5, 5321–5334 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. Zvyagin V. G. and Turbin M. V., Mathematical Problems for Hydrodynamic Viscoelastic Media [Russian], Krassand (URSS), Moscow (2012).

    Google Scholar 

  4. Zvyagin V. G. and Orlov V. P., “Some mathematical models in thermomechanics of continua,” J. Fixed Point Theory Appl., vol. 15, no. 1, 3–47 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  5. Ogorodnikov E. N., Radchenko V. P., and Yashagin N. S., “Rheological model of viscoelastic body with memory and differential equations of fractional oscillators,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, vol. 22, no. 1, 255–268 (2011).

    Article  Google Scholar 

  6. Mainardi F. and Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology,” The Eur. Phys. J. Special Topics, vol. 193, 133–160 (2011).

    Article  Google Scholar 

  7. Kilbas A. A. and Trujillo J. J., “Differential equations of fractional order: methods, results and problems,” Appl. Anal., vol. 78, no. 1–2, 153–192 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. Scott-Blair G. W., A Survey of General and Applied Rheology, Sir Isaac Pitman and Sons, London (1949).

    MATH  Google Scholar 

  9. Gerasimov A. N., “A generalization of linear laws of deformation and its application to the problems of internal friction,” Prikl. Mat. Mekh., vol. 12, no. 3, 251–260 (1948).

    MathSciNet  Google Scholar 

  10. Caputo M. and Mainardi F., “Linear models of dissipation in anelastic solids,” Riv. Nuovo Cimento, vol. 1, no. 2, 161–198 (1971).

    Article  Google Scholar 

  11. Caputo M. and Mainardi F., “A new dissipation model based on memory mechanism,” Pure Appl. Geophys., vol. 91, no. 1, 134–147 (1971).

    Article  MATH  Google Scholar 

  12. Oskolkov A. P., “On some quasilinear systems occurring in studying of motion of viscous fluids,” Zap. Nauchn. Sem. LOMI, vol. 52, 128–157 (1975).

    MATH  Google Scholar 

  13. Samko S. G., Kilbas A. A., and Marichev O. M., Integrals and Fractional-Order Derivatives and Some of Their Applications, Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

  14. Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, Amer. Math. Soc., Providence (2001).

    MATH  Google Scholar 

  15. Zvyagin V. G. and Dmitrienko V. T., Approximating-Topological Approach to Investigation of Problems of Hydrodynamics. A Navier–Stokes System [Russian], `Editorial URSS, Moscow (2004).

    Google Scholar 

  16. Sobolevskii P. E., “Equations of parabolic type in a Banach space,” Trudy Moskov. Mat. Obshch., vol. 10, 297–350 (1961).

    MathSciNet  Google Scholar 

  17. Orlov V. P. and Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory,” Differ. Integral Equ., vol. 4, no. 1, 103–115 (1991).

    MATH  MathSciNet  Google Scholar 

  18. Zvyagin V. G. and Dmitrienko V. T., “On weak solutions of a regularized model of a viscoelastic fluid,” Diff. Equ., vol. 38, no. 12, 1731–1744 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  19. Yosida K., Functional Analysis, Springer-Verlag, Berlin (1994).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Orlov.

Additional information

Original Russian Text Copyright © 2017 Orlov V.P., Rode D.A., and Pliev M.A.

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 58, No. 5, pp. 1110–1127, September–October, 2017; DOI: 10.17377/smzh.2017.58.513.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.P., Rode, D.A. & Pliev, M.A. Weak solvability of the generalized Voigt viscoelasticity model. Sib Math J 58, 859–874 (2017). https://doi.org/10.1134/S0037446617050135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446617050135

Keywords

Navigation