Skip to main content
Log in

Well-posedness of a nonstationary axisymmetric hydrodynamic problem with free surface

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

On assuming that the fluid motion is potential, we prove a local existence and uniqueness theorem for a time-analytic solution in an exact mathematical statement. We obtain a rigorous description of the initial stage of the nonstationary motion of an axisymmetric fluid droplet preceding the moment of evolutionary destruction (blow-up) of the free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavrent’ev M. A., “A contribution to the theory of long waves,” Dokl. Akad. Nauk, vol. 41, no. 7, 275–277 (1943).

    MathSciNet  MATH  Google Scholar 

  2. Stoker J. J., Water Waves: The Mathematical Theory with Applications, Interscience, New York (1957).

    MATH  Google Scholar 

  3. Ovsyannikov L. V., “Justification of the theory of shallow water with free boundaries,” Dinamika Sploshn. Sredy (Novosibirsk), vol. 15, 104–125 (1973).

    Google Scholar 

  4. Nalimov V. I., “The Cauchy–Poisson problem,” Dinamika Sploshn. Sredy (Novosibirsk), vol. 18, 104–210 (1974).

    MathSciNet  Google Scholar 

  5. Ovsyannikov L. V., Makarenko N. I., Nalimov V. I., et al., Nonlinear Problems in the Theory of Surface and Internal Waves [Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  6. Plotnikov P. I., “Ill-posedness of the nonlinear problem of the development of Rayleigh–Taylor instability,” J. Soviet Math., vol. 21, no. 5, 824–829 (1983).

    Article  MATH  Google Scholar 

  7. Zakharov V. E., “Are equations of deep fluid with free surface integrable?” in: Abstracts: Russian–French Workshop “Mathematical Hydrodynamics” (Novosibirsk, Aug. 22–27), Novosibirsk, 2016; http://conf.nsc.ru/mathhydro/en.

    Google Scholar 

  8. Craig W. and Wayne C. E., “Mathematical aspects of surface water waves,” Russian Math. Surveys, vol. 62, no. 3, 453–473 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  9. Nalimov V. I., “Differential properties of the Dirichlet–Neumann operator,” Sib. Math. J., vol. 54, no. 2, 271–300 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. Ovsyannikov L. V., “A singular operator in a scale of Banach spaces,” Soviet Math., Dokl., vol. 6, no. 4, 1025–1028 (1965).

    MATH  Google Scholar 

  11. Ovsyannikov L. V., “General equations and examples,” in: The Free Boundary Problem of Unsteady Motion of a Fluid [Russian], Nauka, Novosibirsk, 1967, 5–75.

    Google Scholar 

  12. Nalimov V. I., “The Cauchy–Poisson problem in Jeffrey classes,” Dinamika Sploshn. Sredy (Novosibirsk), vol. 1, 258–263 (1969).

    Google Scholar 

  13. Ovsyannikov L. V., “A planar free boundary problem of unsteady motion of a fluid,” Dinamika Sploshn. Sredy (Novosibirsk), vol. 8, 22–26 (1972).

    Google Scholar 

  14. Belykh V. N., “The existence and uniqueness theorem for solving the problem of a spherical bubble,” Dinamika Sploshn. Sredy (Novosibirsk), vol. 12, 63–76 (1972).

    Google Scholar 

  15. Ovsyannikov L. V., “Cauchy problem in a scale of Banach spaces,” Proc. Steklov Inst. Math., vol. 281, 3–11 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Tréves F., Ovsyannikov Theorem and Hyperdifferential Operators, Inst. Mat. Pura Apl., Rio de Janeiro (1968) (Notas Mat.; vol. 46).

    MATH  Google Scholar 

  17. Nirenberg L., Topics in Nonlinear Functional Analysis, New York University, New York (1974).

    MATH  Google Scholar 

  18. Bardos C. and Titi E. S., “Euler equations for incompressible ideal fluids,” Russian Math. Surveys, vol. 62, no. 3, 409–451 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyachenko A. I. and Zakharov V. E., “On the formation of freak waves on the surface of deep water,” Pis'ma v Zh. Eksper. Teoret. Fiz., vol. 88, no. 5, 356–359 (2008).

    Google Scholar 

  20. Babenko K. I. and Petrovich V. Yu., Computational Proofs [Russian] [Preprint, no. 133], Inst. Prikl. Mat., Moscow (1983).

    Google Scholar 

  21. Babenko K. I., Fundamentals of Numerical Analysis [Russian], Nauka, Moscow (1986) (2nd edition: RCD, Moscow and Izhevsk, 2002.)

    MATH  Google Scholar 

  22. Kochin N. E., Kibel' I. A., and Rose N. V., Theoretical Hydrodynamics. Part I [Russian], Fizmatlit, Moscow (1963).

    Google Scholar 

  23. Fadeev S. I. and Kogaĭ V. V., Boundary-Value Problems for Ordinary Differential Equations [Russian], Novosibirsk Univ., Novosibirsk (2012).

    MATH  Google Scholar 

  24. Whittaker E. T. and Watson G. N., A Course of Modern Analysis. Part 2: Transcendental Functions, Cambridge Univ. Press, Cambridge (1996).

    Book  MATH  Google Scholar 

  25. Karabut E. A. and Zhuravleva E. N., “Reproduction of solutions in the plane problem on motion of a free-boundary fluid,” Dokl. Phys., vol. 61, no. 7, 347–350 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Belykh.

Additional information

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 58, No. 4, pp. 728–744, July–August, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, V.N. Well-posedness of a nonstationary axisymmetric hydrodynamic problem with free surface. Sib Math J 58, 564–577 (2017). https://doi.org/10.1134/S0037446617040024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446617040024

Keywords

Navigation