Advertisement

Siberian Mathematical Journal

, Volume 58, Issue 3, pp 476–492 | Cite as

C-distribution semigroups and C-ultradistribution semigroups in locally convex spaces

  • M. KostićEmail author
  • S. Pilipović
  • D. Velinov
Article

Abstract

The main purpose of this paper is to study C-distribution semigroups and C-ultradistribution semigroups in the setting of sequentially complete locally convex spaces. We provide a few important theoretical novelties in this field and some interesting examples. Under consideration are stationary dense operators in a sequentially complete locally convex space.

Keywords

C-distribution semigroup C-ultradistribution semigroup integrated C-semigroup convoluted C-semigroups well-posedness locally convex space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lions J. L., “Semi-groupes distributions,” Port. Math., vol. 19, 141–164 (1960).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Balabane M. and Emami-Rad H., “Smooth distributions group and Schrödinger equation in L p(Rn),” J. Math. Anal. Appl., vol. 70, 61–71 (1979).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fattorini H. O., The Cauchy Problem, Addison-Wesley, Cambridge (1983).zbMATHGoogle Scholar
  4. 4.
    Fujiwara D., “A characterisation of exponential distribution semi-groups,” J. Math. Soc. Japan, vol. 18, no. 3, 267–275 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Larsson E., “Generalized distribution semi-groups of bounded linear operators,” Ann. Sc. Norm. Super. Pisa Cl. Sci., vol. 21, 137–159 (1967).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Peetre J., “Sur la théorie des semi-groupes distributions,” Seminaire sur les équations derivees partielles, Collége de France, vol. 2, 76–99 (1963–1964).Google Scholar
  7. 7.
    Da Prato G. and Sinestrari E., “Differential operators with nondense domain,” Ann. Sc. Norm. Super. Pisa Cl. Sci., vol. 14, no. 4, 285–344 (1987).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Arendt W., “Vector-valued Laplace transforms and Cauchy problems,” Israel J. Math., vol. 59, 327–352 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davies E. B. and Pang M. M., “The Cauchy problem and a generalization of the Hille–Yosida theorem,” Proc. Lond. Math. Soc., vol. 55, 181–208 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kostić M., Generalized Semigroups and Cosine Functions, Math. Inst. SANU, Belgrade (2011).zbMATHGoogle Scholar
  11. 11.
    Kunstmann P. C., “Distribution semigroups and abstract Cauchy problems,” Trans. Amer. Math. Soc., vol. 351, 837–856 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang S., “Quasi-distribution semigroups and integrated semigroups,” J. Funct. Anal., vol. 146, 352–381 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kostić M., “C-Distribution semigroups,” Studia Math., vol. 185, 201–217 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kisy´nski J., “Distribution semigroups and one parameter semigroups,” Bull. Pol. Acad. Sci. Math., vol. 50, 189–216 (2002).MathSciNetGoogle Scholar
  15. 15.
    Kunstmann P. C., Mijatović M., and Pilipović S., “Classes of distribution semigroups,” Studia Math., vol. 187, 37–58 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Melnikova I. V. and Filinkov A. I., Abstract Cauchy Problems: Three Approaches, Chapman Hall/CRC, Washington (2001).CrossRefzbMATHGoogle Scholar
  17. 17.
    Melnikova I., “Properties of Lion’s d-semigroups and generalized well-posedness of the Cauchy problem,” Funct. Anal. Appl., vol. 31, no. 3, 167–175 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Miana P. J., “Integrated groups and smooth distribution groups,” Acta Math. Sin. (English Ser.), vol. 23, 57–64 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Beals R., “On the abstract Cauchy problem,” J. Funct. Anal., vol. 10, 281–299 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Beals R., “Semigroups and abstract Gevrey spaces,” J. Funct. Anal., vol. 10, 300–308 (1972).CrossRefzbMATHGoogle Scholar
  21. 21.
    Chazarain J., “Problémes de Cauchy abstraites et applications´a quelques problémes mixtes,” J. Funct. Anal., vol. 7, 386–446 (1971).CrossRefzbMATHGoogle Scholar
  22. 22.
    Cior˘anescu I., “Beurling spaces of class (M p) and ultradistribution semi-groups,” Bull. Sci. Math., vol. 102, 167–192 (1978).MathSciNetGoogle Scholar
  23. 23.
    Emami-Rad H. A., “Les semi-groupes distributions de Beurling,” C. R. Acad. Sci. Sér. A, vol. 276, 117–119 (1973).MathSciNetGoogle Scholar
  24. 24.
    Komatsu H., “Operational calculus and semi-groups of operators,” in: Functional Analysis and Related Topics (Kyoto), Springer-Verlag, Berlin, 1991, 213–234.Google Scholar
  25. 25.
    Kostić M., Pilipović S., and Velinov D., “Structural theorems for ultradistribution semigroups,” Sib. Math. J., vol. 56, no. 1, 83–91 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kunstmann P. C., “Banach space valued ultradistributions and applications to abstract Cauchy problems,” http://math.kit.edu/iana1/kunstmann/media/ultra-appl.pdf.Google Scholar
  27. 27.
    Shiraishi R. and Hirata Y., “Convolution maps and semi-group distributions,” J. Sci. Hiroshima Univ. Ser. A–I, vol. 28, 71–88 (1964).MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ushijima T., “On the abstract Cauchy problem and semi-groups of linear operators in locally convex spaces,” Sci. Pap. Coll. Gen. Educ., Univ. Tokyo, vol. 21, 93–122 (1971).MathSciNetzbMATHGoogle Scholar
  29. 29.
    Vuvunikjan M. Ju., “Asymptotic resolvent and theorems on generation of semigroups of operators in locally convex spaces,” Math. Notes, vol. 22, no. 3, 732–737 (1977).MathSciNetCrossRefGoogle Scholar
  30. 30.
    De Laubenfels R., Existence Families, Functional Calculi and Evolution Equations, Springer-Verlag, New York (1994) (Lect. Notes Math.; V. 1570).CrossRefGoogle Scholar
  31. 31.
    Meise R. and Vogt D., Introduction to Functional Analysis, Clarendon Press, New York (1997) (Oxford Grad. Texts Math.).zbMATHGoogle Scholar
  32. 32.
    Arendt W., El-Mennaoui O., and Keyantuo V., “Local integrated semigroups: evolution with jumps of regularity,” J. Math. Anal. Appl., vol. 186, 572–595 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Arendt W., Batty C. J. K., Hieber M., and Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser/Springer Basel AG, Basel (2001) (Monogr. Math.; vol. 96).CrossRefzbMATHGoogle Scholar
  34. 34.
    Fattorini H. O., “Structural theorems for vector valued ultradistributions,” J. Funct. Anal., vol. 39, 381–407 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Komatsu H., “Ultradistributions. I. Structure theorems and a characterization,” J. Fac. Sci. Univ. Tokyo, Sect. IA Math., vol. 20, 25–105 (1973).MathSciNetzbMATHGoogle Scholar
  36. 36.
    Komatsu H., “Ultradistributions. III. Vector valued ultradistributions. The theory of kernels,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., vol. 29, 653–718 (1982).MathSciNetzbMATHGoogle Scholar
  37. 37.
    Köthe G., Topological Vector Spaces. I, Springer-Verlag, Berlin, Heidelberg, and New York (1969).zbMATHGoogle Scholar
  38. 38.
    Martinez C. and Sanz M., The Theory of Fractional Powers of Operators, Elsevier, Amsterdam (2001) (North-Holland Math. Stud.; vol. 187).zbMATHGoogle Scholar
  39. 39.
    Pilipović S., “Tempered ultradistributions,” Boll. Un. Mat. Ital., vol. 7, 235–251 (1988).MathSciNetzbMATHGoogle Scholar
  40. 40.
    Schwartz L., Théorie des Distributions. 2 vols, Hermann, Paris (1950; 1951).zbMATHGoogle Scholar
  41. 41.
    Komura T., “Semigroups of operators in locally convex spaces,” J. Funct. Anal., vol. 2, 258–296 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Komatsu H., “Ultradistributions. II. The kernel theorem and ultradistributions with support in a manifold,” J. Fac. Sci. Univ. Tokyo, Sect. IA Math., vol. 24, 607–628 (1977).MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ouchi S., “Semi-groups of operators in locally convex spaces,” J. Math. Soc. Japan, vol. 25, 265–276 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Shaw S.-Y. and Kuo C.-C., “Generation of local C-semigroups and solvability of the abstract Cauchy problems,” Taiwanese J. Math., vol. 9, 291–311 (2005).MathSciNetzbMATHGoogle Scholar
  45. 45.
    Tanaka N. and Okazawa N., “Local C-semigroups and local integrated semigroups,” Proc. Lond. Math. Soc., vol. 61, 63–90 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wang S., “Hille–Yosida type theorems for local regularized semigroups and local integrated semigroups,” Studia Math., vol. 151, 45–67 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Kostić M., Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Sci. Publ., Boca Raton, New York, and London (2015).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Department for Mathematics and InformaticsUniversity of Novi SadNovi SadSerbia
  3. 3.Department for Mathematics, Faculty of Civil EngineeringSs. Cyril and Methodius UniversitySkopjeMacedonia

Personalised recommendations